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Microsatellites provide superb tool for population genetics 
study and conservation/management of biological resources [1]. 
However, null alleles of microsatellites often occur and can cause 
egregious errors [2]. Null alleles are mainly due to nucleotide 
sequence divergence (e.g. point mutations or indels) in one or both 
primer binding sites that prevent consistent amplifi cation [3]. Another 
spurious source of null alleles involves sex linkage, wherein in 
diploid organisms the heterogametic sex carries only one allele at 
a locus housed on a sex chromosome [2]. Thus, if sex linkage goes 
unrecognized at a locus, heterogametic sexes will be treated to 
be homozygous and an associated ‘heterozygote defi cit’ might be 
misconstrued as indication of null alleles [2]. A sex-linked marker 
in some circumstances facilitates kinship analyses because of 
its “brute-force” of parentage exclusion [4] and helps to identify 
gender in particular taxa [5]. So far, relative few examples of sex-
linked microsatellites have been published [2].

The microsatel l ite TUT1 was or iginal ly cloned in 
capercaillie (Tetrao urogallus) [6] and used as an autosomal 
locus in several grouse species [7~9]. However, its observed 
heterozygosity was quite lower than expected heterozygosity [6~9], 
e.g. 0.60 vs. 0.83 in capercaillie [6], and Larsson et al. (2008) 
found repeated evidence of null alleles for TUT1 [10]. To clarify 
the potential sex-linkage of a microsatellite and provide some 
insights on the analysis methods, we performed a pedigree study 
of TUT1 in Chinese grouse (Tetrastes sewerzowi) and aligned the 
TUT1 sequence with a chicken (Gallus gallus) genome [11].

 1  Material & Methods
Fourteen females and thirty-one males were captured 

using walk-in traps from November 2006 to May 2009 at the 
Lianhuashan Nature Reserve, Gansu, China. Blood (1 mL) was 
sampled from the brachial vein of all captured adults and marked 
with necklace transmitters, and colored plastic tarsus bands for 
individual identifi cation [12]. Thirty-fi ve eggshell-membranes were 
collected in fi ve clutches with known parents (Table 1).

DNA fragments of TUT1 in all samples were amplified 
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[6] and genotyped using an ABI 3730 capillary sequencer. 
Parentages of the sampled broods were also supported by the 
analysis on other eight microsatellites [13]. Adults were sexed by 
the presence of the black chin patch in males [14] and offspring by 
amplifying the chromo-helicase-DNA-binding (CHD) genes [15]. 
Allelic sequences of one female and one family (including father, 
mother, son and daughter) were determined and deposited in 
GenBank under accession numbers GU462141 and GU738013-8. 
The sequence similarity of TUT1 in Chinese grouse and 
capercaillie (AF254653.1) with a chicken genome (AC189016.1) 
were analyzed using CLUSTAL W in MEGA v3.1 [16]. The 
polymorphism of TUT1 was determined by CERVUS v3.0 [3] and 
the deviance from Hardy-Weinberg equilibrium by GENEPOP 
v4.0 (Fisher’s method) [17].

 2  Results
All females were homozygous whereas 84% of males were 

heterozygous at the TUT1 locus. Every son inherited alleles from 
both parents whereas every daughter carried only one allele from 
father (Table 1). The TUT1 sequences in capercaillie were most 
similar to a region of the Z chromosome of chicken, with the max 
score of 329, query coverage of 71%, max indent of 81%, and 
expect value of 8e-87, which indicated that TUT1 was based on Z 
chromosome.

TUT1 was highly polymorphic among male adults (N = 31), 
with observed alleles of 7, polymorphic information content of 
0.748, and observed and expected heterozygosity of 0.796 and 
0.839, respectively. It did not deviate from the Hardy-Weinberg 
expectations, with an FIS of 0.796.

3  Discussion
TUT1 could also be successfully amplified in Tetrastes 

bonasia, Lagopus lagopus, Tympanuchus phasianellus and 
Centrocercus urophasianus (HÖGLUND Jacob, personal 
communication), altogether in 5 of 7 genera and 7 of 18 species 
in Tetraoninae. We failed to amplify TUT1 in blood pheasant 
(Ithaginis cruentus) and chicken, possibly because the binding 
sites do not fit, thus TUT1 may be specific for Tetraoninae. 

Considering that TUT1 is hypervariable and not deviated from 
Hardy-Weinberg equilibrium that has been found, and can be 
precisely determined (four bytes repeats), it is broadly suitable for 
the kinship and demography analysis for grouse.

Sex linkage remains a noneliminated source of potential 
error in most literature reports of ‘null alleles’ [2]. If sex linkage 
goes unrecognized at a locus and heterogametic sexes are 
treated to be homozygous, the associated ‘lower observed 
heterozygosity than expected’ might be used as evidence of 
genetic impoverishment due to the inbreeding in some isolated 
or threatened populations [7~9]. A ‘homozygous parent’ might 
be falsely excluded for an offspring displaying a different 
‘homozygous’ phenotype, if in fact both actually have only 
one allele that the parent has not inherited to the offspring, like 
TUT1 from mothers to daughters (Table 1). A locus might also 
be unfortunately discarded because of the repeated null alleles 
in heterogametic sexes [10]. Suitable microsatellites are not easy 
to identify in all species, and careful gender-specific analyses 
combined with inheritance study can identify the potential 
sex linkage of microsatellites and thus avoid wrong use. These 
findings highlight the importance of gender-specific analyses 
when publishing and using microsatellites. Complete genome 
maps of many heterogametic organisms have been published 
(http://www.ncbi.nlm.nih.gov/mapview/), sequence similarity 
analysis of microsatellites with published genomes may shed 
insights expediently on their position (i.e. at which chromosome).
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