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Abstract Evolution of cooperation is still a puzzle in evolutionary and socio biology. Based
on the asymmetric interactions in a dominance hierarchy system, a simple theoretical frame-
work is developed to reveal the effect of “induced cooperation” (i.e., the cooperative behavior
of subordinate individuals to dominant individuals) on the evolution of cooperation. Extend-
ing the classic Prisoner’s Dilemma (PD) game, we define the concept of the defection cost
of subordinate individuals to measure the effect of induced cooperation, i.e., a subordinate
defector will incur a cost when it plays against a dominant defector. The analysis of the
repeated PD game with linear dominance hierarchy and with cyclic dominance hierarchy
shows clearly that induced cooperation of subordinate individuals may lead to a population’s
full cooperation, and that the coexistence of cooperation and defection in a population with
hierarchy dominance is possible. Our results are the first step to develop a new theoretical
approach for understanding the emergence of cooperation; namely, that induced cooperation
is one of the most important forces driving the evolution of cooperation as pointed out by
May (in May R, McLean A (eds) Theoretical ecology 3rd edn., (2007)).
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1 Introduction

Altruistic cooperation means that a donor pays a cost, c, for a recipient to get a benefit,
b. Recently, Nowak and Sigmund [26] (see also ref. [22]) reviewed the five rules for the
evolution of cooperation using the classic Prisoner’s Dilemma (PD) game with b > c, which
are kin selection [8,10–12], direct reciprocity [3,4,21,33], indirect reciprocity [24,25], graph
selection [27], and group selection [32], respectively. In their review, it was pointed out how
each of these five rules can promote cooperation if specific conditions are fulfilled. These
five rules are all based on symmetric interactions between individuals in a single population
(i.e., payoffs depend only on the strategies used by these interacting individuals and not on
their designation in a particular subpopulation). Furthermore, a common mechanism behind
each rule is the collective advantage of cooperators through non random interactions (i.e., if
the chance that an interaction between two cooperators occurs is higher than it would be for
random interactions, then cooperation may be favored by natural selection).

Asymmetric interactions between individuals are also common in nature and human soci-
ety. For example, interactions may occur between a male and a female, between old and
young, between small and large individuals, or between the owner of a resource and a non-
owner [30,40]. In a population with a dominance relation (also called dominance hierarchy
or social hierarchy [40]), the asymmetries between individuals may depend on differences
in resource holding power (RHP) such as size, strength, or fighting ability [13,19,30]. In
general, if the difference in RHP between opponents is consistent and detectable, then the
better competitor should consistently win each contest and the other competitor should defer
to its opponent and thereby establish the dominance relationship [16,40]. The simplest form
of a dominance order is called the linear hierarchy, in which individual A is dominant to the
rest of group, B dominates all but A, C dominates all but A and B, and so on [16,39,40].
However, the structure of a dominance hierarchy can be more complicated, for example, the
triangular structure, in which individual A dominates B, B dominates C, and C dominates A
[16,40].

It is recognized that one of the most important mechanisms for establishing dominance
hierarchies in nature and human society is the fact that dominated individuals (also called
subordinate individuals) behave cooperatively in asymmetric interactions. For example, on
the fundamental theoretical question concerning the evolution and maintenance of cooper-
ative behavior within human and other animal communities, May [17] pointed out: “it may
even be that, over the millennia since agriculture was invented, the answer shaped by evolu-
tionary processes to the problem of building complex but stable human societies was to favor
acquiescence in authoritarian hierarchies.”

The evolutionary significance of subordinates exhibiting cooperative behavior in estab-
lishing dominance hierarchy has been studied by many authors (see refs. [16,40]). For con-
venience, we call this behavior “induced cooperation” (of subordinate individuals). We are
interested in the effects of induced cooperation on the evolution of cooperation from the per-
spective of evolutionary games [14] where it is populations that are in a dominance hierarchy
and pairs of indivdiuals from these subpopulations are drawn at random to interact. How-
ever, the effects of induced cooperation on interactions involving only dominant individuals
or only subordinate individuals (i.e., on interactions between individuals in the same subpop-
ulation) are not clear. For the evolution of cooperation, a challenging question is then whether
the induced cooperation of subordinate individuals will promote cooperation in symmetric
interactions between individuals in the same subpopulation (and whether this will lead to full
cooperation in the total population).
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In this paper, a theoretical framework is developed as a base model to study the effect
of induced cooperation on the evolution of cooperation in a population with dominance
hierarchy. In our model, pairs of individuals play a PD game (either one-shot or repeated)
where subordinate individuals incur a “defection cost” if they defect against a dominant
defector.

Our analysis is based on several simplifying assumptions including that the relative sizes
of the subpopulations are fixed [14,29,30] and that, in the repeated PD game, individu-
als either always defect in a given interaction or else play the tit-for-tat strategy (but see
Sect. 2.1 where the other common strategy in the repeated game literature [3,21] to always
cooperate is also considered). We also assume that an individual will use the same strategy
in both symmetric and asymmetric interactions (e.g., if an individual Cooperates (Defects)
in one-shot symmetric interactions, then he will also use Cooperate (Defect) in asymmet-
ric interactions). In game-theoretic terms, this last condition is equivalent to assuming that
players must choose their strategy without knowing the type of their opponent (i.e., without
knowing the subpopulation of their opponent), a common condition in extensive form games
of complete but imperfect information [2,6]. The condition also models situations where the
player cannot change his behavior based on the type of opponent (for example, behaviors
may be genetically programmed). Although these assumptions are clearly not true of every
real system with a dominance hierarchy based on a PD game, our model is a reasonable place
to start the analysis of how such structures affect the evolution of cooperation.

The emergence of cooperative behavior through dominance relations has also been stud-
ied in other sociobiology contexts. For instance, (reproductive) skew theory examines the
allocation of reproductive shares among members of a group [28] whereby either the domi-
nant breeder offers a share of communal reproduction to the subordinate as an incentive for
the recipient to stay as a cooperative member of the group or a compromise is reached with
reproductive shares determined by the competitive abilities of individuals [20,34]. Models
of skew theory also consider conditions for the stability of a particular group size exhibiting
cooperative behavior, whereas we are more interested in conditions on the defection cost that
imply the emergence and maintenance of full cooperation when (relative) group sizes are
fixed.

Asymmetric hierarchical structures based on order of moves have been analyzed in other
game contexts as well. For instance, in Stackelberg games, the hierarchy is formed by desig-
nating one player as the first mover (or leader), and any subsequent mover knows this player’s
choice [36,38]. The resulting Stackelberg equilibrium is different than the outcomes found
in our model where players choose their strategies simultaneously in any PD game [18].

2 Models and Results

2.1 Two-Subpopulation Model with Linear Dominance

Consider first a system consisting of two subpopulations, called A1- and A2-populations
(or groups), respectively. We assume that A1-individuals are better competitors than A2-
individuals in interactions between an A1- and an A2-individual. From this assumption,
interactions between A1-individuals and between A2-individuals should be considered to be
symmetric, while interactions between A1- and A2-individuals are asymmetric. The propor-
tion of A1-individuals (or A2-individuals) in the total population is denoted by z (or 1 − z),
where z is a fixed constant.
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Suppose that all individuals in both A1- and A2-populations display only two phenotypes,
one is cooperation (C) and the other defection (D). According to the PD game based on
costs and benefits [26], let bi j be the benefit an i-individual receives if its opponent in the
j-population cooperates and ci j be the cooperation cost of an i-cooperator for i, j = 1, 2.
Thus, for the symmetric interactions between i-individuals (i = 1, 2), the payoff matrix is

�i i =
C D

C
D

(
bii − cii −cii

bii 0

)
,

where the entry in row k and column � is the payoff to the row player using strategy k (i.e.,
C for k = 1 and D for k = 2) when interacting with the column player using strategy � [21].
Note that the C and D strategies are indicated in this PD game but not in subsequent ones.
Since bi j > ci j in the PD game, if an individual only interacts within its own population,
rational players must defect even though their payoff is higher when everyone cooperates.

For the asymmetric interactions between A1- and A2-individuals, we assume that when
a A2-defector plays against an A1-defector, the A2-defector will incur a cost β imposed
by the dominant A1-individual. Here, we call β the defection cost to a A2-defector when
interacting with an A1-defector. A further assumption is that when an A2-defector plays
against an A1-cooperator, the A2-defector will not pay any defection cost. The payoff matrix
of an A2-individual when it plays against an A1-individual is then given by

�21 =
(

b21 − c21 −c21

b21 −β

)

since −β is the payoff of an A2-defector when it plays against an A1-defector. To model
induced cooperation, we assume that, when a A2-individual meets an A1-defector, the A2-
individual’s defection cost, β, is larger than its cooperation cost, c21 (i.e., β > c21). Thus,
the subordinate individual is better off to cooperate (respectively, defect) against a dominant
defector (respectively, cooperator).

On the other hand, similar to the payoff matrix �i i for symmetric interactions, the payoff
of an A1-individual when it plays against a A2-individual is given by the payoff matrix

�12 =
(

b12 − c12 −c12

b12 0

)
.

To simplify the analysis, we take bi j = b and ci j = c for i, j = 1, 2. The one-shot game is
then characterized by the parameters z, β, b, and c. As shown in the Supporting Information
(SI), the only rational choice (and also the evolutionary outcome) of the A1-population in this
one-shot PD game is to defect. However, if zβ > c, then the advantage to the A2-population
to cooperate in their asymmetric interactions is greater than the net benefit of defecting in
symmetric interactions and so the subordinate population plays C. That is, the dominance
hierarchy has induced cooperative behavior where it would not have existed otherwise.

It is straightforward to extend the above payoff matrices for the one-shot PD game to
model the repeated PD game [4,21] when all individuals in both A1- and A2-populations
display only two phenotypes, tit for tat (TFT) and always defect (AllD), and the expected
number of repeated interactions between two individuals is m̄. Recall that, an individual
using TFT cooperates in the first round of the repeated game and then, in subsequent rounds,
plays the strategy his opponent used in the previous round. Specifically, for the symmetric
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interactions between i-individuals (i = 1, 2) [21], the payoff matrix becomes

Hii =
TFT AllD

TFT
AllD

(
m(b − c) −c
b 0

)
.

Again note that the TFT and AllD strategies are indicated in this repeated PD game but not
in subsequent ones.

For asymmetric interactions, when an A1-individual plays against an A2-individual, the
payoff matrix of the A1-individual equals Hii (i = 1, 2) (i.e., H12 = Hii ), while the payoff
matrix of the A2-individual is

H21 =
(

m(b − c) −c − (m − 1) β

b − (m − 1) β −mβ

)
.

For the remainder of this section, we will assume that the repeated PD game has at least
two expected rounds in addition to the above condition that the defection cost β is larger
than the cost c of cooperation, i.e., β > c and m̄ ≥ 2. The one-shot PD game (i.e., m̄ = 1)
is considered in the SI.

First consider the situation where there are only asymmetric interactions. This is the two-
strategy (with strategies TFT and AllD for both populations) bimatrix game [14] given by
the payoff matrices H12 and H21. Since TFT strictly dominates AllD in the A2-population
(i.e., since m̄(b − c) > b − (m̄ − 1)β and −c − (m̄ − 1)β > −m̄β in the payoff matrix H21),
the A2-population plays TFT in the evolutionary outcome. Given that the A2-population
will all play TFT, the evolutionary outcome will also be TFT in the A1-population when
m̄(b − c) > b in H12, leading to mutual cooperation in all rounds of the repeated PD game.
That is, the strategy pair (TFT, TFT) is the only Nash equilibrium (NE) and the globally
asymptotically stable evolutionary outcome. Full cooperation is induced in both populations
by the dominance hierarchy when m̄ > b/(b − c). On the other hand, if m̄ < b/(b − c), the
globally asymptotically stable evolutionary outcome is the NE (AllD, TFT). Both of these
predictions are clear from the stability analysis of the corresponding evolutionary dynamics
in the SI. The effect of including the strategy that always cooperates (i.e., AllC) is also
considered there. For the resulting three-strategy bimatrix game, the SI shows that (AllD,
AllC) is locally asymptotically stable whenever there is more than one expected round in
the repeated game and that mutually cooperative behavior is only locally asymptotically
stable once m̄ > b/(b − c). That is, allowing individuals to always cooperate cannot induce
full cooperation in both populations (or, to rephrase, TFT is more effective than AllC in
driving the system to full cooperation). Since the same conclusion holds (see SI) when there
are symmetric interactions as well, from now on we will restrict the strategy choices in the
repeated PD game to TFT and AllD.

When there are only symmetric interactions, the two populations can be considered sep-
arately. It is then well known [21] that (i) AllD is always locally asymptotically stable for
both populations and (ii) TFT is never globally asymptotically stable for either population
but that it is locally asymptotically stable if and only if m̄ > b/(b − c). In contrast, the
induced cooperation in the above asymmetric interactions always leads the A2-population to
TFT and this is sufficient to yield cooperative behavior in both populations (i.e., the global
asymptotic stability of (TFT,TFT)) when m̄ is above the threshold value of b/(b − c).

Now consider the situation where there are both symmetric and asymmetric interactions
and suppose that these occur between random individuals in the entire population. As men-
tioned in the Introduction, we assume that a given individual in either population will use the
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same phenotype in both symmetric and asymmetric interactions. Thus, if an individual dis-
plays TFT (AllD) in symmetric interactions, then he will also use TFT (AllD) in asymmetric
interactions.

Let x be the frequency of TFT in A1-population and y the frequency of TFT in A2-
population. Since the proportion of A1-individuals is z, the expected payoffs of TFT and AllD
in the A1-population are FT FT = z

[
xm̄(b−c)−(1−x)c

]+(1−z)
[
ym̄(b−c)−(1−y)c

]
and

FAll D = zxb + (1− z)yb, respectively, and the expected payoffs of TFT and AllD in the A2-
population are GT FT = (1−z)

[
ym̄(b−c)−(1−y)c

]+z
[
xm̄(b−c)−(1−x)(c+(m̄−1)β)

]
and G All D = (1 − z)yb + z

[
x(b − (m̄ − 1)β) − (1 − x)m̄β

]
, respectively. The standard

evolutionary dynamics known as the replicator equation [22] becomes

dx

dt
= x(1 − x)

[(
zx + (1 − z)y

)
(m̄ − 1)(b − c) − c

]
,

dy

dt
= y(1 − y)

[(
zx + (1 − z)y

)
(m̄ − 1)(b − c) − c + zβ

(
1 + x(m̄ − 2)

)]
. (1)

Since m̄ ≥ 2, there is no equilibrium in the interior of the unit square (i.e., ẋ = 0 = ẏ has no
solution for 0 < x, y < 1). Every interior trajectory converges to a NE on the boundary (see
Fig. 1 as well as Fig. S3 in SI). In fact, almost all interior trajectories converge to a strict NE,
which vary among (TFT,TFT), (AllD,TFT), and (AllD,AllD) depending on the parameters
of this game. Here, we report the results from SI in the special case z = 1/2 (i.e., the sizes of
A1- and A2-populations are assumed to be same). It is again the threshold number of rounds
b/(b − c) that is central to characterize the level of cooperation expected in this game. The
following two cases summarize the outcome.

Case 1
(

m̄ > b
b−c

)
. (TFT,TFT) is locally asymptotically stable. That is, if the popu-

lations are sufficiently cooperative initially, the induced cooperation in the A2-population
also produces cooperative behavior in the A1-population. Furthermore, if β > 2c and
m̄ > (b + c)/(b − c), then (TFT,TFT) is globally asymptotically stable (i.e., the dom-
inance hierarchy induces full cooperation). On the other hand, if β < 2c (respectively,
m̄ < (b + c)/(b − c)), then (AllD,AllD) (respectively, (AllD,TFT)) is also locally asymp-
totically stable. The sample trajectories for this case are shown in Fig. 1.

Case 2
(

m̄ < b
b−c

)
. Now, AllD always has higher payoff than TFT in the A1-population

[i.e., x is always decreasing from the first equation in (1)]. Thus, evolution leads them to AllD
just as occurred when there were only asymmetric interactions or only symmetric interactions.
If β > 2c, the A2-population evolves to TFT since the advantage of induced cooperation in
their asymmetric interactions outweighs the combined benefit of defection in their symmetric
and asymmetric interactions. On the other hand, if β < 2c, the A2-population evolves to AllD
if m̄ < (b + c − β)/(b − c) and to either AllD or TFT if m̄ > (b + c − β)/(b − c). The
sample trajectories for this case are shown in Fig. S3 in SI.

Case 1 shows clearly that, for combined symmetric and asymmetric interactions, linear
dominance induces full cooperation when the cost of defection is high and there are a large
number of rounds (specifically, if β > 2c and m̄ > (b + c)/(b − c), then the corner (1, 1)

of the unit square corresponding to full cooperation is globally asymptotically stable). This
means that, although the local stability of (1, 1) depends only on the expected number of
rounds m̄ (i.e., (1, 1) is locally asymptotically stable if m̄ > b/(b−c)), its global stability also
depends on the defection cost β compared to the cost of cooperation c. For lower defection
costs and/or a smaller number of rounds, other locally stable outcomes emerge as summarized
by Cases 1 and 2. It is important to note that, in all these cases, the subordinate population will
be at least as cooperative as the dominant population at the evolutionary outcome. The added
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Fig. 1 Dynamic trajectories of the replicator equation (1) for the two-population repeated PD game with
linear dominance. The four panels illustrate all possibilities in Case 1 since m̄ is large (m̄ > b/ (b − c) = 4)

enough that (TFT,TFT) is locally asymptotically stable. (AllD, AllD) is locally asymptotically stable in panels
a and b (β = 5 < 2c) but not in panels c and d (β = 7 > 2c). (AllD, TFT) is locally asymptotically stable
in panels a (m̄ = 6) and c (m̄ = 5) but not in panel b (m̄ = 9) or d (m̄ = 8). Panel a also includes the
isoclines (see SI) with the green (respectively, cyan) line where dx/dt = 0 (respectively, dy/dt = 0). Other
parameters: b = 4, c = 3, z = 1/2

cost of defection for these subordinate players gives them an extra incentive to cooperate.
This contrasts with the evolutionary outcome of AllD for the A2-population and TFT for the
A1-population when there are only symmetric interactions and m̄ > b/(b − c).

It is also instructive to compare the results of the replicator equation (1) to those when there
are only asymmetric interactions. The general conclusion is that, for combined symmetric
and asymmetric interactions, linear dominance leads to at least as much cooperative behavior
as when there are only symmetric interactions but no more cooperation than when there are
only asymmetric interactions.

Remark The threshold stability values for the repeated game found in Cases 1 and 2 (as well
as elsewhere in the article) can be expressed in terms of how costs and benefit ratios compare
to the degree of relatedness between interacting individuals. For instance, the threshold
m̄ = b/(b − c) is the same as (m̄ − 1)/m̄ = c/b where the left-hand side is the proportion of
one-shot games played by individuals who know each other (called the degree of relatedness
here). That is, by Case 1, (TFT,TFT) is locally asymptotically stable if and only if relatedness
exceeds the cost to benefit ratio in the standard one-shot PD game (an intuitive result similar
to those found for other mechanisms that promote cooperation [22,26]). Furthermore, global
asymptotic stability requires relatedness exceeds the higher ratio 2c/(b + c). Similarly, the
threshold m̄ = (b+c−β)/(b−c) in Case 2 is the same as (m̄ −1)/m̄ = (2c−β)/(b+c−β)
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which adjusts both terms in the previous ratio 2c/(b + c) by the cost of defection when the
A1-population plays AllD.

Clearly, the two-subpopulation model with linear dominance can be extended to the multi-
subpopulation model with linear dominance. A three-subpopulation model with linear dom-
inance is investigated in the SI, in which we denote the subpopulations as Ai for i = 1, 2, 3
and assume that A j -individuals are better competitors than Ai -individuals in interactions
between an Ai -individual and an A j -individual with i > j . Let β21 be the cost of defection
in the A2-population in interactions with the A1-population. Similarly, let β3 j be the cost of
defection in the A3-population in interactions with the A j -population (for j = 1, 2). From
the one-shot PD game, a particularly interesting result is that the linear dominance does not
always imply that the cooperative populations are the ones at the end of the dominance chain.
That is, the A2-population may be cooperative while the A3-population defects. A necessary
condition for this to occur is that the cost of defection in interactions with the dominant
A1-population must be higher for the intermediate A2-population than for the last population
in the dominance chain (i.e., β21 > β31). These results for the one-shot PD game can be
extended to the general n-population model (see the second half of Sect. 2.1 in SI). For the
repeated PD game, the conditions for global asymptotic stability of full cooperation are less
stringent for three subpopulations with linear dominance than for two subpopulations. This
is shown in Sect. 2.2 of the SI where it is pointed out that the intuitive reason for this is
that each individual now has more asymmetric interactions which encourages cooperative
behavior from the subordinate ones.

2.2 Three-Subpopulation Model with Cyclic Dominance

In order to obtain a deeper understanding of the effect of induced cooperation on the evo-
lution of cooperation, a three-subpopulation model is considered with a more complicated
dominance hierarchy. In this model, A1-individuals dominate A2-individuals, A2-individuals
dominate A3-individuals, and A3-individuals dominate A1-individuals, and, for simplicity,
we assume that in all asymmetric interactions, the subordinate individuals have the same
defection cost. This cyclic dominance is reminiscent of the triangular hierarchy structure of
the rock–scissors–paper game [14]. We examine whether this induces corresponding cyclic
behavior in the evolutionary outcome.

The one-shot PD game with cyclic dominance. In the one-shot game, all individuals in the
A1-, A2- and A3-populations display only two phenotypes, cooperation (C) and defection
(D). The payoff matrices for symmetric interactions are

�i i =
(

b − c −c
b 0

)

for i = 1, 2, 3, and for asymmetric interactions are �12 = �23 = �31 = �i i and

�21 = �32 = �13 =
(

b − c −c
b −β

)
.

Recall that zi is the proportion of the Ai -population and xi is the frequency of cooperation
in Ai -population. When there are random pairwise interactions between individuals in the
entire population, the expected payoffs of C and D in Ai -population are F (i)

C = x̄(b − c)

− (1 − x̄)c and F (i)
D = x̄b − z j (1 − x j )β, respectively, for i = 1, 2, 3, where j = 3 if i = 1

and j = i − 1 if i = 2 or 3 . Here, x̄ is the average frequency of C in the total population
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(i.e., x̄ = ∑3
i=1 zi xi ). Thus, the replicator dynamics on the unit cube has the form

dxi

dt
= xi (1 − xi )

[ − c + z j (1 − x j )β
]

(2)

for i = 1, 2, 3, where j = 3 if i = 1 and j = i − 1 if i = 2 or 3.
If βzi < c, then the cost of defection for individuals dominated by Ai is too small to offset

the combined disadvantage of cooperation by these individuals in their three symmetric and
asymmetric interactions. Thus, the only rational behavior in the population dominated by Ai

is defect since D strictly dominates C. This result is reflected in the analysis of the dynamics
(2). For example, if βz3 < c, the frequency of cooperation in the A1-population is strictly
decreasing in the interior of the unit cube (i.e., ẋ1 < 0). A corollary of this result is that, if
βzi < c for all i = 1, 2, 3, then (D,D,D) strictly dominates every other strategy triple and so
the evolutionary outcome is mutual defection in all interactions.

On the other hand, if βzi > c for some i , the system does not evolve to mutual defection.
For instance, if βz1 < c, βz2 < c and βz3 > c, the A2 and A3 populations both play D (i.e.,
x2 and x3 both evolve to 0) since these populations are dominated by A1 and A2 respectively.
Given this behavior, it is then beneficial for the A1-population to exhibit induced cooperation
due to the large number of interactions with the third subpopulation. This translates into the
A1-population becoming fully cooperative (i.e. the corner (1, 0, 0) is globally asymptoti-
cally stable). Similarly, if βz1 < c, βz2 > c and βz3 > c, the corner (0, 0, 1) is globally
asymptotically stable. Now the A2-population must defect (i.e., x2 evolves to 0) and then
the third subpopulation becomes fully cooperative (i.e., x3 evolves to 1), after which the first
subpopulation takes advantage of this induced cooperation and everyone in it defects. Thus,
if βzi > c for some Ai -populations but not for others, exactly one subpopulation becomes
fully cooperative (and the other two defect).

The most interesting case is when βzi > c for all i = 1, 2, 3 since no pure strategy triple
is then a rational choice for the system (i.e., none is a NE). There is still a unique NE but it is
now in the interior of the unit cube; namely, x∗ ≡ (x∗

1 , x∗
2 , x∗

3 ) where x∗
i = (βzi − c)/(βzi )

for i = 1, 2, 3 . However, it cannot be the expected outcome of this game since it is an
unstable rest point of the evolutionary dynamics (2). In particular, the linearization at x∗ has
one negative eigenvalue and two complex conjugate eigenvalues with positive real part. From
the SI, this interior equilibrium is attracting on an invariant curve through x∗ (i.e., on its stable
manifold) that connects the unstable nodes (i.e., sources) (0, 0, 0) and (1, 1, 1) corresponding
to full defection and full cooperation, respectively. The only other rest points of (2) are the
six remaining corners of the unit cube and each of these is an unstable saddle point with two
negative eigenvalues and one positive. The global dynamics on the unit cube follow from
the special properties of system (2) (see SI), especially that it is a competitive system (i.e.,
∂ ẋi/∂x j ≤ 0 for all i �= j) that is volume preserving. In fact, all interior trajectories (except
those initially on the invariant attracting curve through x∗) converge to the heteroclinic cycle
which is formed by the six edges on the boundary of the unit cube that connect these unstable
saddle points in the order (1, 0, 0), (1, 0, 1), (0, 0, 1), (0, 1, 1), (0, 1, 0), (1, 1, 0) (and then
back to (1, 0, 0)). That is, in the limit, the system has at least one and at most two fully
cooperative subpopulations at any particular time (the same is true for the fully defective
subpopulations) as the heteroclinic cycle follows the sequence of pure strategy best replies.

Sample trajectories are plotted in Fig. 2 for this last case and for two parameter sets. In
panel a, all zi are equal (i.e., zi = 1/3 for i = 1, 2, 3) (for which the invariant curve through
x∗ is the line segment joining (0, 0, 0) to (1, 1, 1)) and payoffs are chosen so that x∗

i = 1/2.
This special case corresponds to Jordan’s [15] example and the dynamic analysis given by
Gaunersdorfer and Hofbauer [9]. There is a smooth two-dimensional invariant surface that
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Fig. 2 Dynamic trajectories of the replicator equation (2) for the one-shot three-population PD game with
cyclic dominance. The parameters are chosen b = 3, c = 1, and β = 6. In panel a, zi = 1/3 and x∗

i = 1/2
for all i = 1, 2, 3. In panel b, z1 = 1/2 and z2 = z3 = 1/4 with x∗

1 = 2/3, x∗
2 = x∗

3 = 1/4 . In both panels,
all trajectories are evolving outward from x∗ to the boundary of the cube except for those on the curve through
x∗ connecting (0, 0, 0) to (1, 1, 1)

extends the local unstable manifold at x∗ to the boundary of the cube and that divides the
interior of the cube into two regions symmetic in x∗. These regions are invariant under (2)
and all trajectories in them are attracted to this invariant surface. In panel b, the zi are not all
equal. The stable and unstable manifolds at x∗ are no longer symmetric but the qualitative
behavior of the dynamical system remains as described in the preceding paragraph.

In all these cases for the one-shot game, mutual cooperation for the three populations is
never the evolutionary outcome. That is, cyclic dominance cannot induce full cooperation
since, for example, if two subpopulations behave cooperatively, it is always advantageous
for the other subpopulation to defect with no fear of incurring a cost of defection. For small
defection costs, it remains disadvantageous for any individual to cooperate and so mutual
defection evolves. For high defection costs, cyclic dominance leads to the subpopulations
which are fully cooperative oscillating over time, unlike the result for linear dominance where
only the subordinate subpopulations can cooperate. For intermediate defection costs, exactly
one subpopulation can be fully cooperative depending on model parameters. With β and c
fixed as in our model, this last situation can only arise if subpopulations have different sizes.
For instance, a subpopulation that is substantially larger than the other two will defect since
its expected defection cost in a random interaction is negligible, perhaps contributing to the
potential of large crowds becoming less cooperative. We will now investigate the effect that
repeated interactions have on these predictions.

The repeated PD game with cyclic dominance. If all individuals in A1-, A2-, and A3-
populations display only two phenotypes, TFT and AllD, then the symmetric payoff matrices
are

Hii =
(

m(b − c) −c
b 0

)

for i = 1, 2, 3, and the asymmetric payoff matrices are given by H12 = H23 = H31 = Hii

and

H21 = H32 = H13 =
(

m(b − c) −c − (m − 1) β

b − (m − 1) β −mβ

)
.

If xi denotes the frequency of TFT in Ai -population, then the expected payoffs of TFT and
AllD in the Ai -population are F (i)

T FT = x̄ m̄(b − c) − (1 − x̄)c − z j (1 − x j )(m̄ − 1)β and
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Fig. 3 Trajectories of the
replicator equation (3) for
three-population repeated PD
game with cyclic dominance. For
the parameters chosen (b = 3,
c = 1, β = 4, m̄ = 3, and
zi = 1/3 for i = 1, 2, 3 ), the
corner (1, 1, 1), corresponding to
the strategy triple (TFT, TFT,
TFT), is globally asymptotically
stable

F (i)
All D = x̄b−z j (m̄ −x j )β, respectively, for i = 1, 2, 3, where x̄ = ∑3

i=1 zi xi is the average
frequency of TFT in the entire population, and j = 3 if i = 1 and j = i − 1 if i = 2 or 3.

To simplify the analysis of this model, we will assume that each subpopulation is of the
same size (i.e., zi = 1/3 for i = 1, 2, 3) and also continue to assume that the expected
number of rounds is at least two (i.e., m̄ ≥ 2). Clearly, if β > 3c, TFT is the only rational
choice in each subpopulation since F (i)

T FT > F (i)
All D for every value of xi and all i = 1, 2, 3.

This result is also clear from the replicator equation which becomes

dxi

dt
= xi (1 − xi )

[
x̄(m̄ − 1)(b − c) − c + β

3

(
1 + (m̄ − 2)x j

)]
(3)

for i = 1, 2, 3, where j = 3 if i = 1 and j = i − 1 if i = 2 or 3. When β > 3c,
xi is monotonically increasing. Thus, the system evolves to mutual cooperation when the
defection cost incurred by subordinates is larger than the cost of cooperation in the combined
symmetric and asymmetric interactions. An example is plotted in Fig. 3, in which the corner
(1, 1, 1) is globally stable.

For the remainder of this section, assume that β < 3c. Then (AllD, AllD, AllD) is locally
asymptotically stable since it is a strict NE. The global stability of (AllD, AllD, AllD) depends
on the expected number of rounds in the repeated PD game. From the following two cases,
the result here is also different than in the linear dominance situation where the threshold
number of rounds was b/(b − c). For cyclic dominance, this threshold is replaced by the
smaller quantity (3b + β)/(3b − 3c + β) as summarized in the following two cases.

Case 1
(

m̄ <
3b+β

3b−3c+β

)
. The system evolves to mutual defection (AllD, AllD, AllD) since

this strategy triple strictly dominates any other strategy profile. Thus, xi is monotonically
decreasing for all i = 1, 2, 3 and so (0, 0, 0) is globally asymptotically stable (Fig. 4, panels
a and a’).

Case 2
(

m̄ >
3b+β

3b−3c+β

)
. Both (AllD, AllD, AllD) and (TFT, TFT, TFT) are rational

outcomes since they are both strict NE. That is, both (0, 0, 0) and (1, 1, 1) are locally asymp-
totically stable for the dynamics (3) (Fig. 4, panels b and c). Furthermore, there is an interior
equilibrium of (3) of the form x∗ = (x∗

1 , x∗
2 , x∗

3 ) where x∗
i = (3c − β)

/(
3(m̄ − 1)(b − c)

+ β(m̄ − 2)
) = x∗ for i = 1, 2, 3 (i.e. x∗

1 = x∗
2 = x∗

3 ∈ (0, 1)). If m̄ = 2, there is a plane
of equilibria through x∗ given by x̄ = x∗ (this case is analyzed in the SI). Otherwise (i.e.
m̄ > 2), x∗ is the unique interior equilibrium whose linearization has one positive eigenvalue
and two complex conjugate eigenvalues with non-positive real parts (see SI). In particular, x∗
is an unstable equilibrium with a two-dimensional stable manifold. By symmetry, the unsta-
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Fig. 4 Trajectories of the replicator equation (3) for the three-population repeated PD game with cyclic
dominance and different choices of m̄ (m̄ = 2 in top panels, m̄ = 3 in middle panels, m̄ = 4 in bottom
panels). The left panels show the trajectories in forward time (specifically, for t = 0 to 5) from various
interior initial points and the right panels show the trajectories in backward time (specifically, for t = −10
to 5) from the same initial points. Parameters are chosen (b = 10, c = 7, β = 8) so that (AllD,AllD,AllD)
is locally asymptotically stable (i.e., β < 3c). In panels a and a’, it is globally asymptotically stable since
m̄ < (3b + β)/(3b − 3c + β) (Case 1) but not in the other four panels (Case 2) where both (0, 0, 0) and
(1, 1, 1) are clearly locally asymptotically stable. In the middle panels, with interior rest point x∗

i =1/2 for
all i , the dynamics (3) is symmetric in x∗ and its stable two-dimensional manifold that separates the domains
of attraction is also symmetric in x∗. In backward time (panel b’), trajectories converge to the heteroclinic
cycle along the edges of the unit cube that joins the other six corners as in Fig. 2. In the bottom panels with
x∗=13/43, x∗ is much closer to (0, 0, 0) than (1, 1, 1) and so (0, 0, 0) has a much smaller domain of attraction
(panel c’). Moreover, the attracting heteroclinic cycle in backward time (panel c’) is no longer exclusively
along the edges of the unit cube but includes some portions in the interior of three of the faces

ble manifold (corresponding to the positive eigenvalue) is the invariant line x1 = x2 = x3

joining (0, 0, 0) to (1, 1, 1).
The global dynamics in Case 2 can be understood by analyzing the stable manifold of x∗

for the time-reversal of system (3) (i.e., the trajectories of (3) in backward time). Since the
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dynamics (3) is a cooperative system (i.e., ∂ ẋi/∂x j ≥ 0 for all i �= j), the time reversal of (3)
is again a competitive system which turns out to be volume contracting (see SI). In particular,
there are no nontrivial periodic orbits in the interior of the unit cube (either for the dynamics
(3) or its time-reversal). Moreover, x∗ is the unique interior rest point of this time-reversed
system whose linearization has the same qualitative behavior as the interior rest point of
the dynamics (2) for the one-shot PD game with cyclic dominance; namely, one negative
eigenvalue and two complex conjugate eigenvalues with positive real part. It is shown in the
SI that the local two-dimensional unstable manifold of the time-reversed system extends to
the boundary of the unit cube, dividing the cube into two regions, each of which contains
exactly one of the corners (0, 0, 0) or (1, 1, 1). In backward time, all interior trajectories of
(3) (except those on the line joining (0, 0, 0) to (1, 1, 1)) converge to a heteroclinic cycle on
the boundary of the unit cube (see Fig. 4, panels b’ and c’). Thus, in forward time, all interior
trajectories of (3) initially in the region containing (0, 0, 0) (respectively, (1, 1, 1)) converge
to (0, 0, 0) (respectively, (1, 1, 1)). That is, these regions are the domains of attraction of the
two locally asymptotically stable rest point of the dynamics (3).

3 Conclusion and Discussion

The cooperative behavior exhibited by subordinate individuals to dominant individuals
(which we call “induced cooperation” of subordinate individuals) is one of the most important
characteristics of any population in nature and human society that has a dominance hierarchy
[16,30,40]. Based on this fact, we developed a theoretical framework to investigate whether
this induced cooperation will also promote cooperation in symmetric interactions between
dominant individuals and between subordinate individuals, and whether this will lead to full
cooperation in the total population.

In our model, we defined the concept of defection cost of subordinate individuals, denoted
by β, to measure the asymmetric interactions between subordinate and dominant defectors
(i.e., a subordinate defector will incur a cost β when it plays against a dominant defector),
and we assumed that this defection cost of a subordinate individual is larger than its cost of
cooperation (i.e., β > c). Using the standard repeated PD game based on strategies TFT and
AllD [3,33] our main theoretical results show that full cooperation in the total population can
indeed be the expected outcome from the perspective of rational decision making as well as
from the evolutionary perspective in the sense that this outcome is globally asymptotically
stable. These results are summarized as follows.

For the two-subpopulation repeated PD game with linear dominance, the local stability of
the strategy pair (TFT, TFT) depends only on the expected number of repeated interactions,
m̄, in that (TFT, TFT) is locally asymptotically stable if and only if m̄ > b/(b − c). This
result is identical to that for the repeated game without a dominance structure [21]. However,
TFT is never globally asymptotically stable when there is only one population, whereas it
can be in the two-population model depending not only on the expected number of repeated
interactions but also on the defection cost β of the subordinate individual. Specifically, if
the two subpopulations have the same size, then the strategy pair (TFT, TFT) is globally
asymptotically stable if and only if β > 2c and m̄ > (b + c)/(b − c).

These global stability results for full cooperation can be extended to three popula-
tions. For example, for the three-subpopulation repeated PD game with linear dominance,
if the three subpopulations have the same size and m̄ > b/(b − c), then the strategy
triple (TFT, TFT, TFT) is globally asymptotically stable if and only if β > 3c/2 and
m̄ > max

{
(b + 2c − β)

/
(b − c), (2b + c)

/
2(b − c)

}
. Finally, for the three-subpopulation
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repeated PD game with cyclic dominance and all three subpopulations of the same size, the
strategy triple (TFT, TFT, TFT) is globally asymptotically stable if and only if β > 3c.
All of these results show clearly that the induced cooperation of subordinate individuals to
dominant individuals in a dominance hierarchy system can lead to full cooperation in the
total population.

The above discussion shows that defection costs must be high relative to the cost c of
cooperation in order for dominance hierarchies to induce full cooperation in repeated PD
games. This is often the case in real systems. For instance, Wilson [40] pointed out that
the dominance relationship among bumblebees is orderly and predictable, with punishment
“sometimes so rough that the poor creature is seriously wounded or even killed.” In fact, it
is well known that subordinates will defer to dominant individuals in a hierarchy. However,
the effect this induced cooperation has on the behavior of the dominant subpopulation is not
so clear. Our theoretical model reveals that full cooperation in a hierarchical system can be
induced by the cooperation exhibited by the subordinates. Although this is only a theoretical
result, it does provide an insight into understanding the emergence of cooperation in nature.

Our results also show that coexistence of cooperation and defection is possible in hierarchi-
cal systems (e.g., in repeated games, evolutionary outcomes can lead to mutual cooperation
in interactions between certain subpopulations and mutual defection in others). Specifically,
for the two- and three-subpopulation repeated PD models with linear dominance, (AllD,
TFT) (for two-subpopulation model) and the three-strategy triples (AllD, AllD, TFT) and
(AllD, TFT, TFT) (for three-subpopulation model) can also be rational outcomes for some
choices of model parameters in the sense that they are strict Nash equilibria and so locally
asymptotically stable. The notation for these ordered tuples lists the outcome for the most
dominant species first, followed by the next most dominant and so on (e.g., (AllD, AllD,
TFT) means the least dominant subpopulation plays TFT while the other two play AllD). For
the one-shot PD game (i.e., m̄ = 1) with either linear or cyclic dominance, cooperation in the
total population (i.e., all subpopulations play C) is never the expected outcome (in fact, it is
not even locally asymptotically stable). A particularly interesting result for linear dominance
is that the expected outcome may be (D,C,D), showing that the cooperative populations are
not necessarily those that are least dominant. Moreover, for the one-shot PD game with three-
subpopulations and cyclic dominance, high defection costs will lead to the subpopulations
which are fully cooperative oscillating over time.

The evolution of cooperation is still a puzzle in evolutionary biology [22,26]. Hamilton’s
[10,11] theory of kin selection provides a theoretical explanation for cooperation between
relatives. The basic idea behind kin selection appeals to common sense, i.e., cooperation
can emerge more easily among closely related individuals [23]. According to Hamilton’s
Rule, cooperation among relatives can be favored by natural selection if the coefficient of
genetic relatedness between the donor and the recipient exceeds the cost/benefit ratio of the
altruistic act (i.e., the logic behind Hamilton’s model is that the relatives tend to help each
other because they may inherit genes of a common ancestor with high probability [10,11]).
This intuitive reasoning is formalized through the idea that individuals strive to maximize
their inclusive fitness [37]. Indeed, many cooperative acts among animals occur between
close kin [8,12], including the increased reproductive share given to subordinate individuals
by dominant breeders as the degree of relatedness increases [28].

It is also widely acknowledged that dominance hierarchies are prevalent among kin
[16,40]. Our model, which is based on the fact that subordinate individuals should behave
cooperatively to dominant individuals in a dominance hierarchy system, offers an alterna-
tive, non genetic, argument to show that full cooperation in the total population is possible
under natural selection. The theoretical results of this model provide one of the first steps
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in studying the evolution of cooperation in a hierarchical population. In fact, most animal
populations as well as human society should be considered to be a dominance hierarchy
system [40]. Wilson [40] summarized some special properties of dominance hierarchy sys-
tems for promoting cooperation, which are the xenophobia principle, peace of strong lead-
ership, the will to power, social inertia, and nested hierarchies. For example, he pointed
out that dominant animals of some primate societies utilize their power to terminate fighting
among subordinates (e.g., this phenomenon has been found in rhesus and pig-tailed macaques
[5,31] and in spider monkeys [7]) and that species organized by despotism (e.g., bumblebees,
paper wasps, hornets, and artificially crowded territorial fish and lizards) also live in relative
peace owing to the generally acknowledged power of the tyrant. All of these phenomena not
only align with May’s [17] statement but also provide possible evidence for our theoretical
results.

The model of induced cooperation developed in this paper has certain simplifying assump-
tions discussed near the end of the Introduction. Cooperative behavior can also emerge when
the relative sizes of subpopulations evolve over time according to the differences in their
expected payoffs, although this often leads to the extinction of one subpopulation [35]. An
important question in the corresponding extension of our model is then conditions that imply
the subpopulations persist over time. Other extensions of interest allow model parameters
(e.g., the cost (c), the benefit (b) or the subordinates’s defection cost (β)) to depend on the
interaction or vary with time. We also assumed that individuals cannot condition their strat-
egy choice on the subpopulation of their opponent, perhaps due to a lack of information.
Since imperfect information has been shown to affect the evolution of cooperation in mod-
els of reproductive skew [1], another important question is to analyze informational effects
on cooperative behavior in hierarchical models based on the PD game. Although all these
extensions are beyond the scope of this paper, they are important topics of future research to
gain a better theoretical understanding how dominance hierarchies affect the emergence of
cooperation.
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