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Birds are the most species-rich class of tetrapod vertebrates and have wide relevance
across many research fields. We explored bird macroevolution using full genomes
from 48 avian species representing all major extant clades. The avian genome is
principally characterized by its constrained size, which predominantly arose because
of lineage-specific erosion of repetitive elements, large segmental deletions, and gene loss.
Avian genomes furthermore show a remarkably high degree of evolutionary stasis at
the levels of nucleotide sequence, gene synteny, and chromosomal structure. Despite
this pattern of conservation, we detected many non-neutral evolutionary changes in
protein-coding genes and noncoding regions. These analyses reveal that pan-avian
genomic diversity covaries with adaptations to different lifestyles and convergent
evolution of traits.

W
ith ~10,500 living species (1), birds are
the most species-rich class of tetrapod
vertebrates. Birds originated from a the-
ropod lineagemore than 150million years
ago during the Jurassic and are the only

extant descendants of dinosaurs (2, 3). The earliest
diversification of extant birds (Neornithes) oc-
curred during the Cretaceous period. However,
the Neoaves, the most diverse avian clade, later
underwent a rapid global expansion and radiation
after a mass extinction event ~66 million years
ago near the Cretaceous-Paleogene (K-Pg) bound-
ary (4, 5). As a result, the extant avian lineages
exhibit extremely diverse morphologies and rates
of diversification. Given the nearly complete global
inventory of avian species, and the immense col-
lected amount of distributional and biological
data, birds are widely used as models for
investigating evolutionary and ecological ques-

tions (6, 7). The chicken (Gallus gallus), zebra
finch (Taeniopygia guttata), and pigeon (rock
dove) (Columba livia) are also important model
organisms in disciplines such as neuroscience
and developmental biology (8). In addition, birds
are widely used for global conservation priorities
(9) and are culturally important to human so-
cieties. A number of avian species have been do-
mesticated and are economically important. Farmed
andwild water birds are key players in the global
spread of pathogens, such as avian influenza
virus (10).
Despite the need to better understand avian

genomics, annotated avian genomic data was
previously available for only a few species: the
domestic chicken, domestic turkey (Meleagris
gallopavo) and zebra finch (11–13), together with
a few others only published recently (14–16). To
build an understanding of the genetic complex-

ity of birds and to investigate links between their
genomic variation and phenotypic diversity, we
collected and compared genome sequences of
these and other avian species (48 species total),
representing all 32 neognath and two of the five
palaeognath orders (Fig. 1) (17), thus representing
nearly all of the major clades of living birds (5).

Results

Sequencing, assembly, and annotation

We used a whole-genome shotgun strategy to
generate genome sequences of 45 new avian
species (18), including two species representing
two orders within the infraclass Paleognathae
[common ostrich (Struthio camelus) and white-
throated tinamou (Tinamus guttatus)], the other
order within Galloanserae [Peking duck (Anas
platyrhynchos)], and 41 species representing 30
neoavian orders (table S1) (19). In combination
with the three previously published avian ge-
nomes (11–13), the genome assemblies cover 92%
(34 of 37) of all avian orders (the three missing
orders belong to the Paleognathae) (17). With
the exception of the budgerigar (Melopsittacus
undulatus), which was assembled through a
multiplatform (Illumina/GS-FLX/PacBio) approach
(20), all other new genomes were sequenced
and assembled with Illumina (San Diego, CA)
short reads (Fig. 1) (18). For 20 species, we pro-
duced high (>50×) coverage sequences from
multiple libraries, with a gradient of insert sizes
and built full-genome assemblies. For the re-
maining 25 species, we generated low (~30×)
coverage data from two insert-size libraries and
built less complete but still sufficient assem-
blies for comparative genome analyses. These
de novo (18) genome assemblies ranged from 1.05
to 1.26 Gb, which is consistent with estimated
cytology-based genome sizes (21), suggesting near
complete genome coverage for all species. Scaf-
fold N50 sizes for high-coverage genomes ranged
from 1.2 to 6.9 Mb, whereas those for lower-
coverage genomes were ~48 kb on average (table
S2). The genomes of the ostrich and budgerigar
were further assembled with optical maps, in-
creasing their scaffoldN50 sizes to 17.7 and 13.8Mb,
respectively (20, 22).
We annotated the protein-coding sequences

using a homology-basedmethod for all genomes,
aided by transcriptome sequencing for some spe-
cies (18). To avoid systematic biases related to the
use of different methods in annotations of pre-
viously published avian genomes, we created a
uniform reference gene set that included all
genes from the chicken, zebra finch, and human
(23). This database was used to predict protein
gene models in all avian genomes and American
alligator (Alligator mississippiensis) (24). All
high-coverage genomes were predicted to con-
tain ~15,000 to 16,000 transposable element-free
protein-coding genes [table S3 and annotation
files in (19)], similar to the chicken genome (~15,000).
Despite the fragmented nature of the low-
coverage genomes leading to ~3000 genes like-
ly missing or partially annotated, it was still
possible to predict 70 to 80% of the entire catalog
of avian genes.
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Broad patterns of avian genome evolution
Althoughmany fishes and some amphibians have
smaller genomes than birds, among amniotes,
birds have the smallest (21). The genomes of
mammals and nonavian reptiles typically range
from 1.0 to 8.2 Gb, whereas avian genomes range
from 0.91 in the black-chinned hummingbird
(Archilochus alexanderi) to a little over 1.3 Gb in
the common ostrich (21). A number of hypothe-
ses have been proposed for the smaller avian ge-
nome size (25–28). Here, we document key events
that have likely contributed to this smaller ge-
nome size.
The proliferation and loss of transposable ele-

ments (TEs) may drive vertebrate genome size
evolution (29–31). Consistent with the zebra finch
and galliformes genomes (11–13, 32), almost all
avian genomes contained lower levels of repeat
elements (~4 to 10% of each genome) (table S4)
than in other tetrapod vertebrates (for example,
34 to 52% inmammals) (33). The sole outlier was
the downy woodpecker (Picoides pubescens), with
TEs representing ~22% of the genome, derived
mainly from species-specific expansion of LINE
(long interspersed elements) type CR1 (chicken
repeat 1) transposons (fig. S1). In contrast, the
average total length of SINEs (short interspersed
elements) in birds has been reduced to ~1.3 Mb,
which is ~10 to 27 times less than in other
reptiles [12.6 Mb in alligator; 34.9 Mb in green
sea turtle (Chelonia mydas)], suggesting that a
deficiency of SINEs occurred in the common
ancestor of birds.
We compared the average size of genomic ele-

ments of birdswith 24mammalian and the three

nonavian reptile genomes. Avian protein-coding
genes were on average 50 and 27% shorter than
the mammalian and reptilian genes, respectively
(Fig. 2A). This reduction is largely due to the short-
ening of introns and reduced intergenic distances
that resulted in an increased gene density (Fig. 2A).
Such genomic contraction has also evolved conver-
gently in bats (fig. S11), the only flying mammalian
group. The condensed genomesmay represent an
adaptation tied to rapid gene regulation required
during powered flight (34, 35).
To further investigate whether avian genome

size reduction is due to a lineage-specific reduction
in the common avian ancestor of birds or expan-
sion in other vertebrates (36), we performed an-
cestral state reconstructions of small [<100 base
pairs (bp)] deletion events across an alignment of
four representativewell-assembledavianand three
reptile genomes (18) and found that the avian
ancestral lineage experienced the largest num-
ber of small deletion events—about twice the
number in the common ancestor of birds and cro-
codiles (fig. S12). In contrast, many fewer small
deletion events occurred inmodern avian lineages
(fig. S12).
We next created a gene synteny map between

the highest-quality assembled avian genome
(ostrich) and other reptile genomes to docu-
ment lineage-specific events of large segmental
deletions (18). We detected 118 syntenic blocks,
spanning a total of 58 Mb, that are present in
alligator and turtle genomes but lost in all birds
(table S8). In contrast, ~8x and ~5x fewer syn-
tentic blocks were missing in alligator (14 blocks,
9Mb) and turtle (27 blocks, 8Mb) relative to green

anole, respectively, confirming the polarity of ge-
nome size reduction in birds (table S8). The large
segmental losses in birds were skewed to losses
from chr2 and chr6 of the green anole (fig. S13).
Two of the green anole’s 12 pairs of microchro-
mosomes, LGd and LGf, were completely missing
in birds, with no homologous genes found within
the avian genomes. Most of these lost segments
were located at the ends of chromosomes or close
to the centrosomes (fig. S13). Furthermore, lost seg-
ments were enriched at apparent breakpoints of
the avian microchromosomes (Fig. 2B and fig.
S13). These findings imply that the large segmen -
tal losses may be a consequence of chromosomal
fragmentation events in the common ancestor of
birds giving rise to additional microchromosomes
in modern birds.
The large segmental deletions in birds con-

tain at least 1241 functional protein-coding genes
(table S9), with each lost segment containing at
least five contiguous genes. The largest region
lost in birds was a 2.1-Mb segment of the green
anole chr2, which contains 28 protein-coding
genes (Fig. 2B). Overall, at least 7% of the green
anolemacrochromosomal geneswere lost through
segmental deletions in birds. Although gene loss
is a common evolutionary process, this massive
level of segmental deletion has not been previ-
ously observed in vertebrates. Over 77% of the
1241 genes present in the large segmentally de-
leted regions have at least one additional paralog
in the green anole genome, a level higher than
the overall percentage of genes with paralogs
in the green anole genome or avian genomes
(both at ~70%). This suggests that birds may
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have undergone functional compensation in
their paralogous gene copies, reducing selection
against the loss of these segmental regions. We
predict that the loss of functions associated with
many genes in the avian ancestor may have had
a profound influence on avian-specific traits
(table S11).

Conservative mode of genome evolution

With ~2/3 of avian species possessing ~30 pairs
of microchromosomes, the avian karyotype ap-
pears to be distinctly conserved because this
phenotype is not a general feature of any other
vertebrate group studied to date (37). We as-
sessed the rates of avian chromosomal evolution
among the 21 more fully assembled genomes
(scaffold N50 > 1 Mb) (table S2) (18). From the

alignment of chicken with the other 20 avian
genomes, plus green anole and Boa constrictor (38),
we identified homologous synteny blocks (HSBs)
and 1746 evolutionary breakpoint regions (EBRs) in
different avian lineages and then estimated the
expected number of EBRs (18) and the rates of
genomic rearrangements, using a phylogenetic
total evidence nucleotide tree (TENT) as a guide
(5). We excluded the turkey genome after de-
tecting an unusually high fraction of small lineage-
specific rearrangements, suggesting a high number
of localmisassemblies. Of the 18 remaining non–
Sanger-sequenced genomes (table S2), the esti-
mated rate of chimeric scaffolds that could lead to
false EBRs was ~6% (39).
The average rate of rearrangements in birds is

~1.25 EBRs per million years; however, bursts of

genomic reorganization occurred in several avian
lineages (fig. S15). For example, the origin of Neog-
nathae was accompanied by an elevated rate of
chromosome rearrangements (~2.87 EBRs per
million years). Intriguingly, all vocal learning spe-
cies [zebra finch, medium-ground finch (Geospiza
fortis), American crow (Corvus brachyrhynchos),
budgerigar, and Anna’s hummingbird (Calypte
anna)] had significantly higher rates of rearrange-
ments than those of close vocal nonlearning rela-
tives [golden-collaredmanakin (Manacusvitellinus),
peregrine falcon (Falco peregrinus) and chimney
swift (Chaetura pelagica)] [phylogenetic analysis of
variance F statistic (F) = 5.78, P = 0.0499] and even
higher relative to all vocal nonlearning species (F =
15.03, P = 0.004). This may be related to the larger
radiations these clades experienced relative tomost
other bird groups. However, the golden-collared
manakin, which belongs to suboscines (vocal non-
learners) that have undergone a larger radiation
than parrots and hummingbirds, has a low rear-
rangement rate.
We next compared microsynteny (local gene

arrangements), which is more robust and ac-
curate than macrosynteny analyses for draft
assemblies (18). We compared with eutherian
mammals, which are approximately the same
evolutionary age as Neoaves and whose genome
assemblies are of similar quality. We examined
the fraction of orthologous genes identified from
each pair of two-avian/mammalian genomes, on
the basis of syntenic and best reciprocal blast
matches (18). Birds have a significantly higher
percentage of synteny-defined orthologous genes
than that of mammals (Fig. 2C). The fraction of
genes retained in syntenic blocks in any pairwise
comparison was linearly related with evolution-
ary time, by which the overall level of genome
shuffling in birds was lower than in mam-
mals over the past ~100 million years (Fig.
2C). This suggests a higher level of constraint on
maintaining gene synteny in birds relative to
mammals.
The apparent stasis in avian chromosome evo-

lution suggests that birds may have experienced
relatively low rates of gene gain and loss in mul-
tigene families. We examined the intensively
studied gene families that encode the various
a- and b-type subunits of hemoglobin, the tetra-
meric protein responsible for blood oxygen trans-
port in jawed vertebrates (40). In amniotes, the
a- and b-globin gene families are located on dif-
ferent chromosomes (40) and experienced high
rates of gene turnover because of lineage-specific
duplication and deletion events (41). In birds,
the size and membership composition of the
globin gene families have remained remark-
ably constant during ~100 million years of evo-
lution,withmost examined species retaining an
identical complement (Fig. 2D). Estimated gene
turnover rates (l) of a- and b-globin gene fam-
ilies were over twofold higher in mammals than
birds (l = 0.0023 versus 0.0011, respectively).
Much of the variation in the avian a-globin gene
family was attributable to multiple indepen-
dent inactivations of the aD-globin gene (Fig.
2D), which encodes the a-chain subunit of a
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Downy Woodpecker
Carmine Bee-eater
Rhinoceros Hornbill
Bar-tailed Trogon
Cuckoo Roller
Speckled Mousebird
Barn Owl
Turkey Vulture
White-tailed Eagle
Bald Eagle
Red-legged Seriema
Peregrine Falcon
Budgerigar
Kea
Rifleman
Golden-collared Manakin
American Crow
Zebra Finch
Medium Ground-finch
White-tailed Tropicbird
Sunbittern
Red-throated Loon
Emperor Penguin
Adelie Penguin
Northern Fulmar
Great Cormorant
Crested Ibis
Little Egret
Dalmatian Pelican
Hoatzin
Grey-crowned Crane
Killdeer
Red-crested Turaco
MacQueen's Bustard
Common Cuckoo
Chuck-will’s-widow
Anna’s Hummingbird
Chimney Swift
American Flamingo
Great-crested Grebe
Pigeon
Yellow-throated Sandgrouse
Brown Mesite
Peking Duck
Turkey
Chicken
White-throated Tinamou
Common Ostrich

High-coverage
Low-coverage

Sanger sequenced

Fig. 1. Avian family tree and genomes sequenced. The phylogenomic relationships of the 48 avian
genomes from (5), with Sanger-sequenced (black), high-coverage (dark red), and low-coverage (light red)
genomes denoted.
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Colored bars and lines indicate homologous blocks between two species;
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hemoglobin isoform (HbD) expressed in both
embryonic and definitive erythrocytes (42). Be-
cause of uniform and consistent differences in
oxygen-binding properties between HbD and
the major adult-expressed hemoglobin isoform,
HbA (which incorporates products of aA-globin)
(42), the inactivations of aD-globin likely contrib-
ute to variation in blood-oxygen affinity, which
has important consequences for circulatory
oxygen transport and aerobic energy metabo-
lism. Overall, the globin gene families illustrate a
general pattern of evolutionary stasis in birds
relative to mammals.
Genomic nucleotide substitution rates vary

across species and are determined through both
neutral and adaptive evolutionary processes
(43).We found that the overall pan-genomic back-
ground substitution rate in birds (~1.9 × 10–3

substitutions per site per million years) was lower
than in mammals (~2.7 × 10–3 substitution per
site per million years) (Fig. 3A). However, the
substitution rate estimates also exhibited inter-
ordinal variation among birds (Fig. 3A). There

was a positive correlation between the substi-
tution rate and the number of species per order
[coefficient of determination (R2) = 0.21, P = 0.01,
Pearson’s test with phylogenetically indepen-
dent contrasts] (Fig. 3B and fig. S19), evidenc-
ing an association with rates of macroevolution
(44). For example, Passeriformes, the most di-
verse avian order, exhibited the highest evolu-
tionary rate (~3.3 × 10–3 substitutions per site per
million years), almost two times the average of
Neoaves (~2 × 10–3 substitutions per site per
million years, Fig. 3A). Landbirds exhibited an
average higher substitution rate than that of
waterbirds (landbirds, ~2.2 × 10–3 substitutions
per site per million years; waterbirds, ~1.6 × 10–3

substitutions per site per million years), which is
consistent with the observation that landbirds
have greater net diversification rates than those
of waterbirds (7). Among the landbirds, the pre-
datory lineages exhibited slower rates of evolu-
tion (~1.6 × 10–3 substitutions per site permillion
years), similar to that of waterbirds. Moreover,
the three vocal learning landbird lineages (parrots,

songbirds, and hummingbirds) are evolving faster
than are nonvocal learners (Fig. 3A). Overall, our
analyses indicate that genome-wide variation
in rates of substitution is a consequence of the
avian radiation into a wide range of niches and
associated phenotypic changes.

Selective constraints on
functional elements

Conservation of DNA sequences across distant-
ly related species reflects functional constraints
(45). A direct comparison of 100-Mb orthologous
genomic regions revealed more regions evolving
slower than the neutral rate among birds (Fig.
3C) thanmammals (46), which is consistent with
the slower rate of avian mitochondrial sequence
evolution (47). We predicted 3.2 million highly
conserved elements (HCEs) at a resolution of
10 bp or greater spanning on average 7.5% of
the avian genome, suggesting a strong functional
constraint in avian genomes. Functional anno-
tations revealed that ~12.6% of these HCEs were
associated with protein-coding genes, whereas
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the majority of the remaining HCEs were located
in intron and intergenic regions (Fig. 3, D and E).
These HCEs enabled us to identify 717 new protein-
coding exons and 137 new protein-coding genes,
with 77% of the latter supported by the deep
transcriptome data (table S17). Deep transcrip-
tome sequencing also enabled us to annotate
5879 candidate long noncoding RNA (lncRNA)
genes, of which 220 overlapped HCEs with a
coverage ratio of >50% (table S18) (18).
Because HCEs may have different functions in

different lineages, we separated the HCEs into
two categories: bird-specific and amniote HCEs
(shared by birds andmammals). Among the bird-
specific HCEs, we identified 13 protein-coding
genes that were highly conserved in birds but
divergent inmammals (table S19). One of themost
conserved was the sperm adhesion gene, SPAM1,
whichmediates spermbinding to the egg coat (48).
This gene, however, was under positive selection
driven by spermcompetition inmammalian species
(49). Noncoding HCEs play important roles in the
regulation of gene expression (50); thus, we com-
pared the transcription factor binding sites in
the ENCODEproject (51)with theHCEs and found
that the avian-specific HCEs are significantly
associated with transcription factors functioning
inmetabolism (table S20), whereas amniote core
HCEs are enriched with transcription factors
functioning in signal regulation, stimulus re-
sponses, and development (table S21).
To investigate evolutionary constraints on gene

regions, we calculated dN/dS [the ratio of the
number of nonsynonymous substitutions per non-
synonymous site (dN) to the number of synony-
mous substitutions per synonymous site (dS)]
for 8295 high-quality orthologs. Consistent with
the fast-Z sex chromosome hypothesis (52), the
evolutionary rate of Z-linked genes was signif-
icantly higher than autosome genes (Fig. 4A).
This is most likely driven by the reduction of ef-
fective population size (Ne) of Z-linked genes—
because the Ne of Z chromosome is only 3/4 of
that of autosomes—as well as by male sexual
selection (52). Furthermore, consistent with the
fast-macro hypothesis, the overall rate of macro-

chromosomal genic evolution is higher than that
of microchromosomes (Fig. 4A), which is prob-
ably due to differences in the recombination rates
and genic densities between macro- and micro-
chromosomes in birds (53).
We also examined the dN/dS ratio of each

avian Gene Ontology (GO) category for com-
parison with mammals and within birds. Those
involved in development (such as spinal cord
development and bone resorption) are evolving
faster in birds, and those involved in the brain
function (such as synapse assembly, synaptic
vesicle transport, and neural crest cell migration)
are evolving faster in mammals (tables S23 and
S24). Genes involved in oxidoreductase activity
were relatively rapidly evolving in the Palaeog-
nathae clade that contains the flightless ratites
(Fig. 4B and table S25). The fast evolving GOs in
the Galloanserae participate in regulatory func-
tions (Fig. 4B and table S26). In Neoaves, genes

involved in microtubule-based processes were
the fastest evolving (Fig. 4B and table S27). We
speculate that these differences could be caused
by relaxed selective constraints or positive selec-
tion in different lineages.

Genotype-phenotype convergent
associations: Evolution of vocal learning

With the availability of genomes representing all
major modern avian lineages and their revised
phylogenetic relationships (5), it becomes possible
to conduct genome-wide association studies across
specieswith convergent traits.We focused on vocal
learning, which given our phylogenetic analyses is
inferred as having evolved independently, either
twice, in hummingbirds and the common ancestor
of songbirds and parrots, or three times (5, 54). All
threegroupshave specializedsong-learning forebrain
circuits (song nuclei) not found in vocal nonlearners
(Fig. 5A) (55).
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Analyses of 7909 orthologous protein-coding
genes with available amino acid sites in all three
vocal-learning and control vocal nonlearning
groups revealed convergent accelerated dN/dS
for 227 genes in vocal learners (table S28). Of
these, 73% (165) were expressed in the songbird
brain (physically cloned mRNAs), and of these,
92% (151) were expressed in adult song-learning
nuclei, which is much higher than the expected
60% of brain genes expressed in song nuclei
(56). About 20% (33) were regulated by singing,
which is twice the expected 10% (56). In addi-
tion, 41% of the song nuclei accelerated genes
showed differential expression among song nu-
clei [expected 20% (56)], and 0.7 to 9% [0.7 to
4.3% expected (57)] showed specialized expression
compared with the surrounding brain regions
(table S28) (58). GO analyses of the accelerated
differentially expressed song nuclei genes re-
vealed 30 significant functionally enriched gene
sets, which clustered into four major categories,
including neural connectivity, brain development,
and neural metabolism (fig. S25). For an inde-
pendent measure of convergence, we developed
an approach that scans for single amino acid
substitutions common to species with a shared
trait, controlling for phylogenetic relationships
(18). Of the 7909 genes, 38 had one to two amino
acid substitutions present only in vocal learners
(table S31). At least 66% of these were expressed
in the songbird brain, including in the song nuclei
[58%; 20%expected (56)]. Two genes (GDPD4 and
KIAA1919) showed convergent accelerated evolu-
tion on the amino acid sites specific to vocal
learners (table S31).
To identify accelerated evolution in noncoding

sequences in vocal learners, we scanned the ge-
nome alignment using phyloP (18, 59). We used a
more limited sampling of vocal nonlearning spe-
cies closely related to the vocal learners (table
S32) because of the relatively faster evolutionary
rate of noncoding regions.We scanned the entire
genome alignment and found 822 accelerated
genomic elements specifically shared by all three
vocal learning groups (table S33). These conver-
gent elements were skewed to intergenic regions
in vocal learners relative to the background av-
erage accelerated elements across species (Fish-
er’s exact test, P < 2.2 × 10–16) (Fig. 5B). Of these
elements, 332 were associated with 278 genes
(within 10 kb 5′ or 3′ of the nearest gene), of
which a high proportion (76%) was expressed in
the brain; almost all of those (94%, 198 genes)
expressed in one or more song nuclei, 20% were
regulated by singing (10% expected), 51% (20%
expected) showed differential expression among
song nuclei, and 2 to 15% [0.7 to 4.3% expected,
based on (56)] had specialized expression relative
to the surrounding brain regions, including the
FoxP1 gene involved in speech (table S34 and
figs. S27 to S32). Overall, these analyses show a
2- to 3.5-fold enrichment of accelerated evolu-
tion in regulatory regions of genes differentially
expressed in vocal learning brain regions. In con-
trast, there was very little overlap (2.5%) of genes
with convergent accelerated noncoding changes
and convergent accelerated amino acid changes,

indicating two independent targets of selection
for convergent evolution.

Evolution of ecologically relevant genes

We also investigated candidate genes that un-
derlie traits relevant to avian ecological diversity.
Although these analyses should be approached
with caution given the phenotypic and ecological
plasticity within major avian lineages, we ex-
amined genes putatively associated with major
skeletal and tissue changes for the capacity for
powered flight, feeding modification such as loss
of teeth, the advanced visual system found in some
lineages, and sexual and reproductive systems.

Evolution of the capacity for flight

Skeletal systems: The evolution of flight involved
a series of adaptive changes at themorphological
and molecular levels. One of the key require-
ments for flight is a skeleton that is both strong
and lightweight. In both birds and nonavian
theropods, this evolved through the fusion and
elimination of some bones and the pneumati-
zation of the remaining ones (60). Of 89 genes
involved in ossification (table S36), 49 (~55%)
showed evidence of positive selection in birds,
which is almost twice as high as in mammals
(31 genes, ~35%). For birds, most of these are
involved in the regulation of remodeling and
ossification-associated processes, or bone devel-
opment in general, and those with the highest
values for global dN/dS (>0.5) were obtained
for AHSG (a-2-HS-glycoprotein), which is as-
sociated with bone mineral density, and P2RX7
(P2X purinoceptor 7), which is associated with
bone homeostasis. The variation in the extension
of pneumatization in avian post-cranial bones has
been associated with the variation in body size
and foraging strategies (61). Therefore, selection
of these genes may explain variation in the levels
of bone pneumatization in birds because the genes
involved in the process of maintaining trabeculae
within bones likely depends on the intrinsic net-
work of genes participating in bone resorption
and mineralization. These results suggest that
most structural differences in bone between
birds and mammals may be a result of bone re-
modeling and resorption (table S37).
Pulmonary structure and function: The increased

metabolism associated with homeothermy and
powered flight requires an efficient gas exchange
process during pulmonary ventilation. Because
of functional integration of ventilation and loco-
motion, birds evolved a volume-constant lung
and a rigid trunk region, whereas mammals
evolved a changing-volume lung, often coupled to
locomotory flexion of the lumbar region (62). In
contrast to the pulmonary alveola of the mam-
malian lung, the avian lung has a honeycomb-like
structure incorporating a flow-through system
with small air capillaries (63). We found five genes
that function in mammalian lung development
that were lost in the avian ancestor (table S11).
Feathers: The evolution and subsequent mor-

phological diversification of feathers have shaped
avian physiology, locomotion, mate choice, and
ecological niches (64). Feathers are composed

of a- and b-keratins (65), the latter of which are
structural proteins found only in the epidermal
appendages of birds and other reptiles. The
a-keratin gene family has contracted in birds
relative to reptiles (except turtle) and mam-
mals (0.7-fold change), whereas the b-keratin
gene family has expanded (1.96-fold change)
relative to reptiles (Fig. 6A and table S39). The
avian b-keratins form six clusters, with all ma-
jor avian lineages possessing members from
each avian cluster (fig. S33), indicating that avian
b-keratin diversity was present in the basal avian
lineage. Of these, the feather b-keratin subfamily
is avian-specific and comprises over 56% of the
genes, whereas the remaining avian b-keratin
subfamilies (claw, scale, and keratinocyte b-keratin
subfamilies) are found in turtles and crocodiles
(Fig. 6A and fig. S33). The mean number of ke-
ratinocyte b-keratins is similar across bird groups
and their two closest living reptile relatives (turtle
and alligator), suggesting copy number conser-
vation since their common ancestor (Fig. 6A).
In contrast, aquatic/semi-aquatic birds have a
relatively lowmean number of feather b-keratins
compared with that of land birds, with land
birds having more than double the number, and
among them several domesticated land birds
(zebra finch, chicken, pigeon, and budgerigar)
having more than 8 times (Fig. 6A). Although
the later observation is concordant with the
hypothesis that domestication may increase
the recombination rate at b-keratin loci (66,
67), domestic turkey and Peking duck did not
exhibit this trend. Overall, these findings indi-
cate that feather compositional adaptations
are associated with different avian lifestyles.

Evolution of genes related to diet

Edentulism: The evolution of birds also had
major consequences with regard to their feeding
strategies and diets, with changes at the struc-
tural, biochemical, and sensory levels (among
others). One of the most immediately obvious
avian-specific traits is edentulism, the pheno-
type of being toothless. Edentulism is thought to
have evolved independently in multiple thero-
pod lineages (68). However, although most phylo-
genetic analyses suggest that teeth were lost in the
common ancestor of modern birds (69), several
studies have recovered dentate taxa (Hesperornis
and Ichthyornis) from the Mesozoic inside of
crownNeornithes, suggesting that tooth loss could
have occurred independently (70). A scan of avian
genomes for molecular fossils of tooth-specific
genes recovered remnants of enamel and dentin
formation genes in all species examined [table 1
in (71)]. Frameshift mutations and whole-exon
deletions were widespread in all investigated
tooth genes. The vast majority of debilitating
mutationswere not shared, but all species shared
unambiguous deletions in protein-coding exons
of enamel-specific genes (ENAM, AMEL, AMBN,
MMP20, andAMTN) and one dentin-specific gene
(DSPP). This shared pattern of pseudogenization
across living birds supports the hypothesis that
the common ancestor of modern birds lacked
mineralized teeth (69).
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Diet-related enzymes: Birds have evolved an ex-
traordinary diversity of dietary specializations. The
glyoxylate detoxifying enzyme alanine/glyoxylate
aminotransferase (AGT) represents a candidate
for study (72). We recovered complete AGT genes
from 22 avian genomes (table S42), of which five
exhibit pseudogenized forms in theirMTS region
(Fig. 6B and fig. S34). MTS function was lost in
three unrelated avian orders, which is consistent
withmultiple independent dietary transitions dur-
ing avian evolution. Detection of positively selected
amino acids at 137 Q (dN/dS = 2.153) and 378 R
(dN/dS = 2.153) in all birds provided additional
support for diet-related adaptation in AGT (po-
sitions according to human AGT; posterior prob-
ability > 99%; P < 0.0001).
Vitamin C (Vc) is an important nutrient co-

factor in a range of essential metabolic reactions.
Loss of the ability to synthesize Vc has occurred
in humans, Guinea pigs, and some bats. All spe-
cies that do not synthesize Vc exhibit a pseudo-
genized gene for L-gulonolactone oxidase (GULO),
an enzyme essential for catalyzing the last step
of Vc synthesis (73). Genomic mining revealed
GULO pseudogenization in two oscines (medium

ground-finch and zebra finch) and the suboscine
golden-collared manakin (Fig. 6B and fig. S35).
In contrast, intact GULOwas recovered from the
third oscine species, American crow, and the basal
passerine rifleman (Acanthisitta chloris) (table S43).
Similar tomammals (74), this pseudogenizationwas
caused by the loss of different exons and lethal
mutations. We also found purifying selection has
dominated GULO evolution, from the ancestral
amniote node (dN/dS = 0.096) to ancestral birds
(dN/dS = 0.133) and mammals (dN/dS = 0.355),
suggesting conservation of the ability to synthe-
size Vc both before and after avian divergence.
However, both the American crow and rifleman
exhibitednonsynonymous changes inGULO at one
order of magnitude higher than the average (fig.
S36), a sign of potentially harmful mutations (75).

Rhodopsin/opsins and vision

Birds exhibit what is possibly the most advanced
vertebrate visual system, with a highly developed
ability to distinguish colors over a wide range
of wavelengths. In contrast tomammals, which
have relatively few photoreceptor classes, almost
all birds studied to date have retained an an-

cestral tetrapod set of cones hypothesized to
play a role in reproduction and feeding (76). Ver-
tebrate visual opsins are classified into five genes
in two families: rhodopsin (RH1) and conopsins
(RH2, OPN1sw1, OPN1sw2, and OPN1lw). Inmost
avian genomes, we detected higher numbers of
opsin genes than inmammalian genomes, which
lacked OPN4x (77), RH2, and either OPN1sw1
(Monotremata) or OPN1sw2 (Theria). All avian
genomes contained RH1 and RH2, and most
high-coverage genomes contained two to three
of the remaining three conopsin genes (table
S44), supporting that ancestral avian vision is
tetrachromatic. Penguins were one of the ex-
ceptions, with both species exhibiting only three
classes of functional opsins, and thus are tri-
chromatic, which is in line with retinal examina-
tion (78). This is likely due to their aquatic lifestyle
and is consistent with observations of marine
mammals that also appear to have lost one, or
even both, cone pigment (or pigments) (76).
Signs of strong positive selection were detected

in the branch leading to the passerine group
Passerida (represented by the medium ground-
finch and zebra finch) (fig. S38), which corrob-
orates that the shift from violet sensitive SWS1
cones in this clade was adaptive (79). Excluding
these species, dN/dS values for OPN1sw1 were
lower in birds than in mammals (Fig. 6C). Op-
timal color discrimination requires an even dis-
tribution of spectral sensitivities (80), which is
more easily disturbed with an increasing num-
ber of cone classes. Hence, stabilizing selection
on spectral sensitivity should be stronger in
birds than in mammals, and the dN/dS values
are consistent with this prediction. Besides two
transmembrane regions (II and VII) encom-
passing previously identified spectral tuning
amino acids in the SWS1 conopsin, we found
markedly positive selection in region IV, strongly
suggesting that there is one or more unknown
amino acid sites important to spectral tuning of
this ultraviolet-sensitive cone (fig. S40).

Sex-related and reproductive traits

Reproduction-related genes: Unlike other rep-
tiles, almost all birds develop only a single func-
tional ovary, on the left side (81), as a result of the
evolutionary loss of the right ovary during the
transition from nonavian theropods to birds (82).
It has been hypothesized that this loss represents
an adaptation to reduce weight during flight (82).
We found that two genes related with ovary de-
velopment (MMP19 and AKR1C3) have been lost
in birds. MMP19, a matrix metalloprotease gene,
functions during the follicular growth and the
ovulation process (83), and the enzyme AKR1C3
catalyzes the conversion of androstenedione to
testosterone and has been associated with po-
lycystic ovary syndrome (84).
We analyzed a range of other genes related to

reproduction, under the hypothesis that some
of them may have been direct targets of the
morphological and behavioral adaptations related
to sexual selection in birds. Reproduction genes
in Drosophila, humans, and marine invertebrates
evolve faster than do nonreproduction genes
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(49). We chose 89 genes that may be involved in
spermatogenesis (table S46) and six involved in
oogenesis (table S47). We found that 19 out of
46 avian species show significantly accelerated
evolution (lineage-specific dN/dS ratio) of sper-
matogenesis genes relative to the genomic back-
ground (table S48). In contrast, only the carmine
bee-eater (Merops nubicoides) and Peking duck
showed significantly accelerated evolution in
oogenesis genes (table S49). These results suggest
that male birds are the dominant targets of sexual
selection, which drives rapid evolution of sper-
matogenesis genes via sperm competition (85).
Plumage color: We investigated the genomics

of plumage color, a behaviorally important trait
and longstanding example of sexual selection
(86). Male birds have frequently evolved extrav-
agant plumage color in response to both male-
male competition and female choice (87, 88),
resulting in remarkable sexual dichromatism.
Analysis of 15 genes implicated in avian plumage
coloration demonstrated rapid evolutionary rates
over the genomic average in 8 of 46 lineages
(table S51). This pattern suggests that these
genes are evolving under adaptive evolution.
Carotenoids,whichare responsible for thebright

yellow and red pigments that underlie some of the
most conspicuous colorationpatterns in vertebrates,
unlike melanins can be only acquired through diet
and represent trade-offs between coloration and
other physiological conditions. We identified a neg-
ative correlation between color discriminability and
dN/dS across birds for the gene GSTA2, which is
involved in the binding and deposition of carote-
noids and in plumage dichromatism (R2 = 0.24,P=
0.045, Pearson’s test with phylogenetically indepen-
dent contrasts) (Fig. 6D and fig. S41), and sim-
ilarly for SLC24A4, which is associated with hair
color in humans (R2 = 0.21, P = 0.056, Pearson’s
test with phylogenetically independent contrasts)
(Fig. 6D and fig. S42), suggesting that either diver-
sifying and stabilizing selection or the effect of
different population sizes is driving the evolution
of plumage color genes.

Discussion and conclusions

The small genome size of birds with fragmented
microchromosomes and reduced repeat trans-
poson activity, in contrast to other vertebrates,
has been a static feature in the avian clade for
>100 million years. Avian genomes consistent-
ly contain fewer genes, ~70% of the number of
the human genome, and with one detected ex-
ception (downy woodpecker), an extremely re-
duced fraction of repeat elements. Thus, the
ancestral avian lineage has distinctly lost a large
number of genes by means of large segmental
deletions after their divergence from other ex-
tant reptiles. These large genomic sequence dele-
tions appear to be linked to a second defining
feature of avian genomes: the putatively ances-
tral fission of macrochromosomes into a relative-
ly large number of microchromosomes.
Genome conservation in birds—along with

regard to sequence, synteny, and chromosomal
structure—is remarkable in light of their rapid
historical radiation. This is considerably differ-

ent from the evolution of mammalian genomes,
which although are experiencing a rapid radia-
tion at a similar time, today display richer ge-
nome shuffling and variation (89). By comparing
the genomes of 48 birds that are constrained
within a largely resolved phylogeny, we discovered
millions of highly constrained elements com-
prising 7.5% of avian genomes. This evolutionary
profiling of genomes across >100 million years
(5) enables their interpretation in a functional
genomic context not possible in previous ge-
nomic studies restricted to fewer taxa.
The analyses of genome sequences for taxa

distributed across the avian phylogeny also ex-
plains the rich biodiversity of the avian clade
because we identified selective constraints on
certain categories of genes in different avian
lineages. Convergent evolution also appears to
be shaping the evolution of protein-coding genes
and their regulatory elements, establishing similar
morphological or behavioral features in distantly
related bird species, as well as variation in specific
gene families that correspond to avian traits and
environmental adaptation. We believe that the
data and analyses presented here open a new
window into the evolution, diversification, and
ecological adaptation of tetrapod vertebrates and
offers a phylogenomic perspective that helps bridge
the chasm between micro- and macroevolution.
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To better determine the history of modern birds, we performed a genome-scale phylogenetic
analysis of 48 species representing all orders of Neoaves using phylogenomic methods
created to handle genome-scale data. We recovered a highly resolved tree that confirms
previously controversial sister or close relationships. We identified the first divergence in
Neoaves, two groups we named Passerea and Columbea, representing independent lineages
of diverse and convergently evolved land and water bird species. Among Passerea, we infer
the common ancestor of core landbirds to have been an apex predator and confirm independent
gains of vocal learning. Among Columbea, we identify pigeons and flamingoes as belonging to
sister clades. Even with whole genomes, some of the earliest branches in Neoaves proved
challenging to resolve, which was best explained by massive protein-coding sequence
convergence and high levels of incomplete lineage sorting that occurred during a rapid
radiation after the Cretaceous-Paleogene mass extinction event about 66 million years ago.

T
he diversification of species is not always
gradual but can occur in rapid radiations,
especially aftermajor environmental changes
(1, 2). Paleobiological (3–7) and molecular (8)
evidence suggests that such “big bang” radia-

tions occurred for neoavian birds (e.g., songbirds,
parrots, pigeons, and others) and placental mam-
mals, representing 95% of extant avian and mam-
malian species, after the Cretaceous to Paleogene
(K-Pg)mass extinction event about 66million years
ago (Ma). However, other nuclear (9–12) and mito-
chondrial (13, 14) DNA studies propose an earlier,
more gradual diversification, beginning within
the Cretaceous 80 to 125 Ma. This debate is con-
founded by findings that different data sets (15–19)
and analytical methods (20, 21) often yield con-

trasting species trees. Resolving such timing and
phylogenetic relationships is important for com-
parative genomics,which can informabout human
traits and diseases (22).
Recent avian studies based on fragments of 5

[~5000 base pairs (bp) (8)] and 19 [31,000 bp (17)]
genes recovered some relationships inferred from
morphological data (15, 23) and DNA-DNA hy-
bridization (24), postulated new relationships,
and contradicted many others. Consistent with
most previous molecular and contemporary mor-
phological studies (15), they divided modern
birds (Neornithes) into Palaeognathae (tinamous
and flightless ratites), Galloanseres [Galliformes
(landfowl) and Anseriformes (waterfowl)], and
Neoaves (all other extant birds). Within Neoaves,
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