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Abstract The one-third law introduced by Nowak et al. (Nature 428:646–650, 2004) for the
Moran stochastic process has proven to be a robust criterion to predict when weak selection
will favor a strategy invading a finite population. In this paper, we investigate fixation prob-
ability, mean effective fixation time, and average and expected fitnesses in the diffusion ap-
proximation of the stochastic evolutionary game. Our main results show that in two-strategy
games with strict Nash equilibria A and B: (i) the one-third law means that, if selection fa-
vors strategy A when a single individual is using it initially, then one-third of the opponents
one meets before fixation are A-individuals; and (ii) the average fitness of strategy A about
the mean effective fixation time is larger than that of strategy B. The analysis reinforces the
universal nature of the one-third law as of fundamental importance in models of selection.
We also connect risk dominance of strategy A to its larger expected fitness with respect to
the stationary distribution of the diffusion approximation that includes a small mutation rate
between the two strategies.

Keywords One-third law · Average fitness · Mean effective fixation time · Fixation
probability

1 Introduction

Evolutionary game theory has been successfully applied since its introduction by Maynard
Smith and Price [13] to explain many aspects of the evolution of animal behavior. One of
the basic assumptions in the by now classic approach to deterministic evolutionary game dy-
namics [7] is that population size is large enough that stochastic fluctuations in the evolution
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of phenotypic frequencies due to finite population size can be ignored. On the other hand,
it has long been recognized (e.g. [3, 10]) that stochastic effects of finite populations are bi-
ologically significant in standard models of population genetics (e.g. models that assume
natural selection is weak or there is neutral drift).

Stochastic effects due to small errors in strategy choice have also been used as an equi-
librium selection technique in game-theoretic models to predict (long-run) human behavior
through such concepts as stochastic stability [4, 9]) (see also [19]). More recently, Nowak
et al. [16] investigated a stochastic process for games with two (pure) strategies, denoted by
A and B , when total population size is fixed at N . They introduced the one-third law into
this model by analyzing when selection favors a single mutant using strategy A replacing
a resident population using the other pure strategy B . In its basic form, the one-third law
connects Nash equilibrium (NE) concepts of this two-strategy game to stochastic properties
of the birth-death Markov system known as the Moran process.1 Specifically, Nowak et al.
[16] showed that (when A and B are both strict NE, population size is large, and selection
is weak) the probability this replacement occurs under the Moran process is higher than that
obtained from neutral drift if the completely mixed NE of this game plays strategy A less
than one-third of the time (see also [15, 20]).

The basic one-third law has been generalized to other Markov processes, such as the
Wright-Fisher process [8], that satisfy the mild condition that the Kingman coalescent
method [12] of ancestral patterns can be used. Moreover, the dependence of this result on
the assumption of weak selection in general birth-death processes has been analyzed [25]
and extensions found for multi-player two-strategy games [11].

Of more importance for us, the one-third law also emerges from the continuous-time
diffusion approximations of the Moran2 and Wright-Fisher processes [23]. In other general-
izations, Ohtsuki et al. [17] showed that the one-third property of the mixed NE corresponds
to several different evolutionarily significant characteristics of the Moran process; namely,
the average relative fitness of A players, the average proportion of each type encountered
until fixation along a stochastic path, and the mean effective fixation time (see also [21]).
In this paper, these properties are developed through the diffusion approximation method.
Our main goal is to show that the one-third law is a general phenomenon of weak selection
modeled by two-strategy evolutionary games based on a population with a fixed finite size.
A by-product of the analysis in Sects. 3 to 5 used to connect the diffusion approximation to
different interpretations of the one-third law for the Moran process is that we are also able
to re-interpret risk dominance (also called half-dominance [14]) in terms of the (long-run)
expected fitness of A compared to B (Sect. 6).

2 The Moran Process and Diffusion Approximation

The two-strategy stochastic evolutionary game with finite population size introduced by
Nowak et al. [16] (see also [15, 20]) is based on the payoff matrix

( A B

A a b

B c d

)
(1)

1The one-third law can also be connected to other game-theoretic properties of this two-strategy game such
as the basin of attraction of strategy A under deterministic evolutionary game dynamics that ignore stochastic
effects (see the discussion of p∗-dominance at the end of Sect. 3).
2The diffusion approximation for the Moran process is summarized in Sect. 2.
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where the entries in this matrix give the payoffs to the row player (e.g. A gets payoff b when
interacting with strategy B). The population size, N , is assumed to be fixed and the number
of A-individuals is denoted by j . The number of B-individuals is then N − j and, for the
frequency-dependent Moran process, the expected fitnesses of A and B in random pairwise
interactions, denoted by fj and gj , respectively, are taken as

fj = (1 − ω) + ω
a(j − 1) + b(N − j)

N − 1
,

gj = (1 − ω) + ω
cj + d(N − j − 1)

N − 1
.

(2)

Here the parameter ω (with ω ∈ [0,1]) denotes the selection intensity, which represents the
contribution of the game to individual fitness [16].

Nowak et al. [16] assumed that, at each time step, an individual is chosen for reproduction
proportional to its fitness,3 and that the one identical offspring produced replaces another
randomly chosen individual. For this model, selection is said to favor A replacing B if,
when there is initially one A individual in the population (i.e. the initial frequency of A

is 1/N ), the fixation probability of A (denoted by ρA) is bigger than 1/N , which is this
fixation probability under neutral drift (i.e. ω = 0). The main result of Nowak et al. [16]
is that, for weak selection (specifically, for ω � 1), selection favors A replacing B if and
only if (N − 2)a + (2N − 1)b > (N + 1)c + (2N − 4)d . For large population size N , this
condition can be approximated as a + 2b > c + 2d . If both A and B are strict NE of (1) (i.e.
a > c and d > b), then ρA > 1/N if x� < 1/3, where x� = (d −b)/[(a − c)+ (d −b)] is the
frequency of A at the completely mixed NE of this game. This is called the one-third law.

The diffusion approximation of this Moran process was first studied by Traulsen et al.
[22, 23] (see also [21]). For large N , the frequency of A is denoted by x (i.e. x = j/N ); the
fitnesses of A and B are approximated by

f (x) ≈ (1 − ω) + ω
[
xa + (1 − x)b

]
,

g(x) ≈ (1 − ω) + ω
[
xc + (1 − x)d

]
,

(3)

respectively, with corresponding transition probabilities from x to x + 1/N and from x to
x − 1/N given by

π+(x) = x(1 − x)f (x)

xf (x) + (1 − x)g(x)
,

(4)
π−(x) = x(1 − x)g(x)

xf (x) + (1 − x)g(x)
,

respectively. Let φ(x; t) denote the probability density distribution that the frequency of
strategy A equals exactly x at time t . When the time step for the Moran process is taken as
1/N , then

φ(x; t + 1/N) − φ(x; t) = φ(x − 1/N; t)π+(x − 1/N) + φ(x + 1/N; t)π−(x + 1/N)

− φ(x; t)π−(x) − φ(x; t)π+(x). (5)

3If selection is weak (i.e. ω is close to 0), every individual will always have positive fitness and so the

probability that the chosen individual uses strategy A is given by
jfj

jfj +(N−j)gj
. Although we only analyze

the diffusion approximation under weak selection, we will nevertheless assume all payoff entries in (1) are
positive so that the frequency-dependent Moran process is defined for all ω ∈ [0,1].



Dyn Games Appl (2011) 1:462–477 465

The diffusion approximation of the Moran process emerges from the Taylor series expansion
of φ(x ± 1/N; t) and π±(x ∓ 1/N) about x and t (following, for example, the methods
in [24]). Specifically, starting from the discrete-time Moran process, Traulsen and Hauert
[21] obtain a continuous-time diffusion equation. The outcome (shown in the Appendix) is
the Fokker–Planck equation of φ(x; t); namely,

∂φ(x; t)
∂t

= − ∂

∂x
D(1)(x)φ(x; t) + ∂2

∂x2
D(2)(x)φ(x; t). (6)

Here

D(1)(x) = π+(x) − π−(x),
(7)

D(2)(x) = π+(x) + π−(x)

2N
,

where D(1)(x) is called the drift term that is due to fitness differences (i.e. to selection) and√
2D(2)(x) is the diffusion term (genetic drift in biology) (see also [21]). From (4) and (7),

both x = 0 and x = 1 are absorbing boundaries. Equation (6) is also called the forward
Kolmogorov equation in mathematics.

Of equal importance for us is the backward Kolmogorov equation. If the initial frequency
p at t = 0 is considered, then the probability density function φ(x; t) should be rewritten as
φ(x;p, t), i.e. the probability density distribution that the frequency of strategy A equals x

at time t if its initial frequency is p. For the backward equation, we regard x as fixed and
consider p as a random variable. Then, similar to (5),

φ(x;p, t + 1/N) − φ(x;p, t) = π+(p)φ(x;p + 1/N, t) + π−(p)φ(x;p − 1/N, t)

− π+(p)φ(x;p, t) − π−(p)φ(x;p, t) (8)

for the Moran process with time step 1/N . The Taylor expansions of φ(x;p, t + 1/N) and
φ(x;p ± 1/N, t) about t and p in the Appendix (see also [3, 10]) yield

∂φ(x;p, t)

∂t
= D(1)(p)

∂φ(x;p, t)

∂p
+ D(2)(p)

∂2φ(x;p, t)

∂p2
(9)

as the diffusion approximation, i.e. the backward Kolmogorov equation.
Traulsen and Hauert [21] emphasized that the diffusion approximation of the stochastic

evolutionary game for large population size can be used to address stochastic properties of
the evolutionary dynamics in large populations under weak selection. In this paper, we show
that this is indeed the case for the concepts of fixation probability (including both fixation
probabilities of A and B), mean effective fixation time and average fitnesses about the mean
effective fixation time initially studied for the Moran process (see [17] or [21] for details of
the latter concepts). Specifically, we show that each of these concepts has a corresponding
property for the diffusion approximation in Sects. 3 to 5, respectively, when population size
is large and selection is weak.

3 Fixation Probability of Strategy A

Let u(p, t) denote the probability that strategy A is fixed at time t if its initial frequency is p

(i.e. the fixation probability of strategy A at time t with initial frequency p). For the Moran
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process, this probability satisfies (8) with x = 1 and so its diffusion approximation is given
by

∂u(p, t)

∂t
= D(1)(p)

∂u(p, t)

∂p
+ D(2)(p)

∂2u(p, t)

∂p2
(10)

with the boundary conditions u(0, t) = 0 and u(1, t) = 1. Consider the ultimate probability
u(p) of fixation of strategy A, defined by u(p) = limt→∞ u(p, t). Since x = 1 is an ab-
sorbing boundary of (6), this limit exists and u(p) is the stationary solution of (10). That
is,

D(1)(p)
du(p)

dp
+ D(2)(p)

d2u(p)

dp2
= 0. (11)

Furthermore, since the fixation probability of a single individual under neutral drift is 1/N ,
the extension of the one-third law to the diffusion equation would then be the statement
that, when selection is weak and population size is large, u(1/N) > 1/N . To examine this
statement, we follow Traulsen et al. [23], who show that the solution of (11) is given by

u(p) =
∫ p

0 S̃(s) ds∫ 1
0 S̃(s) ds

, (12)

where

S̃(s) ≡ exp

(
−

∫ s

0

D(1)(z)

D(2)(z)
dz

)

= exp

(
−

∫ s

0
2N

f (z) − g(z)

f (z) + g(z)
dz

)

= exp

(
−

∫ s

0
2Nω

z(a − c) + (1 − z)(b − d)

2 − 2ω + ωz(a + c) + (1 − z)(b + d)
dz

)
.

For Nω � 1 and α ≡ a − b − c + d (recall that x∗ ≡ d−b
a−c+d−b

),

S̃(s) ≈ exp

(
−

∫ s

0
Nω

(
αz + (b − d)

)
dz

)
= exp

(
−Nωα

2

(
s2 − 2sx�

))
. (13)

Clearly, if there is no selection (i.e. ω = 0), then u(p) = p since S̃(s)|ω=0 = 1. In
particular, if there is initially exactly one A individual in the population (i.e. p = 1/N ),
then u(1/N) = 1/N ) (the same result holds for the Moran process under neutral se-
lection [3, 15]). For ω 
= 0 but Nω � 1, we consider the Taylor expansion of u(p)

about ω = 0. Since ∂u(p)

∂ω
=

∫ p
0

∂S̃(s)
∂ω

ds·∫ 1
0 S̃(s) ds−∫ p

0 S̃(s) ds·∫ 1
0

∂S̃(s)
∂ω

ds

[∫ 1
0 S̃(s) ds]2 and ∂S̃(s)

∂ω
|ω=0 = −Nα

2 (s2 −
2sx�)S̃(s)|ω=0 = −Nα

2 (s2 − 2sx�),

∂u(p)

∂ω

∣∣∣∣
ω=0

= −Nα

2

∫ p

0

(
s2 − 2sx�

)
ds + p

Nα

2

∫ 1

0

(
s2 − 2sx�

)
ds

= −Nα

2

[
p3

3
− p2x�

]
+ p

N	

2

[
1

3
− x�

]
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= p
Nα

2

[
−p2

3
+ px� + 1

3
− x�

]

= p
Nα

2

[
−x�(1 − p) + 1

3
(1 − p)(1 + p)

]

= p(1 − p)
Nα

2

[
−x� + 1

3
(1 + p)

]
. (14)

Thus, the Taylor expansion of u(p) about ω = 0 is

u(p) = u(p)|ω=0 + ω
∂u(p)

∂ω

∣∣∣∣
ω=0

= p + p(1 − p)
Nωα

2

[
−x� + 1

3
(1 + p)

]
. (15)

If A and B are both strict NE, then α > 0 and so u(p) > p if x� < (1 + p)/3 (and u(p) < p

if x� > (1 + p)/3). For large population size, we have u(1/N) > 1/N if x� < 1/3. This
result corresponds to the one-third law of Nowak et al. [16] (see also [15]). That is, under
weak selection and large population size satisfying Nω � 1,4 the probability that a single
A-individual takes over the population that otherwise consists of B-individuals is greater
than 1/N if x� < 1/3 (see also [21, 22]).

Similarly, let u′(q) be the ultimate fixation probability of B if its initial frequency is q .
From the above method applied to strategy B ,

u′(q) = q + q(1 − q)
Nωα

2

[
−y� + 1

3

(
1 + q

)]
, (16)

where y� = 1 − x�. This result also follows directly from (15) since the absorbing states
of our one-dimensional diffusion process are the two endpoints. Thus, the population will
eventually be in a monomorphic fixation state of either all A individuals or all B individuals
(i.e. u(p) + u′(q) = 1 when q = 1 − p). From (15), (16) and α > 0, u(1/N) > u′(1/N)

if x� < 1/2, and u(1/N) < u′(1/N) if x� > 1/2. This is another interpretation of selection
favoring A more than B . It corresponds more directly to the observation by Nowak [15]
that, if both A and B are strict NE, then the risk-dominant equilibrium will also have a
higher fixation probability when comparing the two Moran processes starting with only one
individual using a particular strategy.

Both risk dominance and the one-third law are connected to the concept of p∗-dominance
when both pure strategies are strict NE. By definition, strategy A is p∗-dominant in a two-
strategy game if the expected payoff to A is greater than that of B from a random pairwise
interaction whenever the frequency of strategy A is at least p∗ [14].5 It is well known that
A is risk dominant if and only if it is half dominant. From this perspective, the one-third
law states that selection favors strategy A if it is one-third dominant. Furthermore, the basin
of attraction of a p∗-dominant strategy under deterministic evolutionary dynamics contains
all mixed strategies with frequency of A at least p∗. That is, a strict NE that satisfies the

4To avoid repetition, weak selection will mean Nω � 1 from now on.
5p∗-dominant is equivalent to p∗-superior for two-strategy games [2] in that strategy A has higher than
average expected payoff if the frequency of strategy A is at least p∗.
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one-third law must attract all initial populations whose frequency of strategy A is at least
one-third.

From the above discussion, it would be reasonable to call properties of the Moran pro-
cess (and its diffusion approximation) that correspond to risk dominance the one-half law
of stochastic evolutionary dynamics based on finite population size. On the other hand, risk
dominance (and half dominance) are already well-established concepts studied in other con-
texts (e.g. [1, 6]). For this reason, it may be more appropriate to continue to refer to these
properties of the Moran process as consequences of risk dominance rather than to speak of
the one-half law.

4 Mean Effective Fixation Time

In this section, we consider the mean time until one of the boundaries (i.e. x = 0 or x = 1) is
reached. Let ϑ(t;p) denote the density function of the time t until absorption occurs given
the initial frequency p. Similar to the analysis of fixation probability in the previous section,
ϑ(t;p) also satisfies the backward equation [3]

∂ϑ(t;p)

∂t
= D(1)(p)

∂ϑ(t;p)

∂p
+ D(2)(p)

∂2ϑ(t;p)

∂p2

where the boundary conditions are now ϑ(t,0) = ϑ(t,1) = 0.
Since the mean fixation time t̄ (p) = ∫ ∞

0 tϑ(t;p)dt is finite [3, p. 140], we have
tϑ(t;p) → 0 as t → ∞. Thus,

−1 = −
∫ ∞

0
ϑ(t;p)dt

= −[
tϑ(t;p)

]∞
0

+
∫ ∞

0
t
∂ϑ(t;p)

∂t
dt

= 0 +
∫ ∞

0
t

(
D(1)(p)

∂ϑ

∂p
+ D(2)(p)

∂2ϑ

∂p2

)
dt.

This can be rewritten as

−1 = D(1)(p)
dt̄(p)

dp
+ D(2)(p)

d2 t̄ (p)

dp2
. (17)

From Ewens [3, pp. 140 to 145], the solution of (17), subject to the boundary condition
t̄ (0) = t̄ (1) = 0, can be expressed in terms of the notation introduced in Sect. 3. Specifically,

t̄ (p) =
∫ 1

0
t (x;p)dx,

where

t (x;p) = u′(1 − p)

D(2)(x)S̃(x)

∫ x

0
S̃(s) ds

for 0 ≤ x ≤ p, and

t (x;p) = u(p)

D(2)(x)S̃(x)

∫ 1

x

S̃(s) ds
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for p ≤ x ≤ 1. When Nω � 1, S̃(x) ≈ 1 and D(2)(x) ≈ x(1 − x)/2N . Thus, for weak
selection, t̄ (p) is approximated by

t̄ (p) =
∫ p

0
t (x;p)dx +

∫ 1

p

t (x;p)dx

= 2Nu′(1 − p)

∫ p

0

1

1 − x
dx + 2Nu(p)

∫ 1

p

1

x
dx

= −2N
[
(1 − p) ln(1 − p) + p ln(p)

]
. (18)

The integral
∫ x2

x1
t (x;p)dx represents the mean time that the frequency of A, x, spends

in the interval (x1, x2) before absorption. It approximates the average amount of time spent
before absorption in those states of the Moran process that are in this interval (i.e. those j for
which x1 < j/N < x2), which is called the “mean sojourn time” by Ohtsuki et al. [17]. Fur-
thermore,

∫ x2
x1

π+(x)t (x;p)dx represents the mean time that the system state jumps from x

to x + 1/N when x is in the interval (x1, x2), and, similarly,
∫ x2

x1
π−(x)t (x;p)dx the mean

time that the system state jumps from x to x − 1/N when x is in the interval (x1, x2). No-
tice that

∫ x2
x1

π+(x)t (x;p)dx +∫ x2
x1

π−(x)t (x;p)dx <
∫ x2

x1
t (x;p)dx since the system state

does not always jump from state x to x ± 1/N . We call
∫ x2

x1

(
π+(x) + π−(x)

)
t (x;p)dx

the mean effective time that x spends in the interval (x1, x2) (see the corresponding concept
of “mean effective sojourn time” introduced by Ohtsuki et al. [17] for the Moran process).
Moreover, let τ̄ (p) denote the mean effective fixation time until one or the other absorbing
boundary is reached when the initial frequency of A is p. Then,

τ̄ (p) =
∫ 1

0

(
π+(x) + π−(x)

)
t (x;p)dx.

For weak selection,

τ̄ (p) =
∫ p

0

(
π+(x) + π−(x)

)
t (x;p)dx

+
∫ 1

p

(
π+(x) + π−(x)

)
t (x;p)dx

=
∫ p

0
2Nu′(1 − p)x dx +

∫ 1

p

2Nu(p)(1 − x)dx

≈ 2N
(
1 − u(p)

)∫ p

0
x dx + 2Nu(p)

∫ 1

p

(1 − x)dx

= N
(
p2 + u(p) − 2pu(p)

)
. (19)

In particular, for p = 1/N , τ̄ (p) ≈ 1 − 1
N

.
By dividing τ̄ (p) into two parts, we can now approximate the mean effective time τ̄1(p)

of meeting A-individuals and the mean effective time τ̄2(p) of meeting B-individuals be-
fore absorption. Specifically, τ̄1(p) = ∫ 1

0 x(π+(x) + π−(x))t (x;p)dx and τ̄2(p) = ∫ 1
0 (1 −
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x)(π+(x) + π−(x))t (x;p)dx and so τ̄ (p) = τ̄1(p) + τ̄2(p). Extending the calculations
in (19) for Nω � 1 and p = 1/N (see the Appendix)

τ̄1(p) ≈ 1

3
− 1

3N2
and τ̄2(p) ≈ 2

3
− 1

N
+ 1

3N2
. (20)

Thus, for weak selection and large population size, the ratio (mean effective fixation
time meeting A-individuals)/(mean effective fixation time) is about 1/3 when p = 1/N

(i.e. τ̄1(p)/τ̄ (p) ≈ 1/3 for p = 1/N ). Equivalently, the ratio (mean effective fixation time
meeting B-individuals)/(mean effective fixation time) is about 2/3 (i.e. τ̄2(p)/τ̄ (p) ≈ 2/3
for p = 1/N ). That is, as stated by Ohtsuki et al. [17] for the Moran process, “one-third of
the opponents that one meets (in interactions leading to state changes) until either extinction
or fixation are A-players and two-thirds are B-players”. The above calculations show the
same result is true for the diffusion equation corresponding to the Moran process, yielding
another version of the one-third law.

5 Average Fitness About the Mean Effective Fixation Time

Ohtsuki et al. [17] also emphasized that the one-third law is equivalent to the positivity of
the average Malthusian fitness6 of A (i.e.

∫ 1
0 (1 − x)(f (x) − g(x)) dx > 0 if and only if

x� < 1/3). They then relate this result, which is based on the deterministic game dynamics
of infinite population size, to the fixation probability of A under the Moran process. In this
section, we develop a more direct link between average fitnesses of strategies A and B using
the diffusion approximation when selection is weak.

For this purpose, define the average fitness of strategy A about the mean effective fix-
ation time τ̄ (p), denoted by f̄τ̄ (p), as 1

τ̄ (p)

∫ 1
0 f (x)(π+ + π−)t (x;p)dx. Similarly, ḡτ̄ (p) ≡

1
τ̄ (p)

∫ 1
0 g(x)(π+ + π−)t (x;p)dx is the average fitness of strategy B about the mean effec-

tive fixation time. We have

f̄τ̄ (p) = 1

τ̄ (p)

[∫ p

0
f (x)

(
π+ + π−)

t (x;p)dx

+
∫ 1

p

f (x)
(
π+ + π−)

t (x;p)dx

]

= 2N

τ̄(p)

[∫ p

0
xf (x)

(
1 − u(p)

)
dx +

∫ 1

p

(1 − x)f (x)u(p)dx

]

= 2N

τ̄(p)

[(
1 − u(p)

)(1

2
(1 − ω)p2 + 1

3
ω(a − b)p3 + 1

2
ωbp2

)

+ u(p)

(
1

2
− 1

2
ω + 1

6
ωa + 1

3
ωb − (1 − ω + ωb)p

+ 1

2

(
1 − ω − ω(a − 2b)

)
p2 + 1

3
ω(a − b)p3

)]

≈ 1 − ω + ωb + ω(a − b)

3
· 2p3 + u(p)(1 − 3p2)

p2 + u(p)(1 − 2p)
. (21)

6The Malthusian fitness of A when the population is in state x (i.e. (1 − x)(f (x) − g(x))) is also called
the relative advantage of A [5] since it is the difference between the fitness of A and the average population
fitness (i.e. f (x) − (xf (x) + (1 − x)g(x))).
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The final step above results from substituting (19) for the mean effective time τ̄ (p). Simi-
larly,

ḡτ̄ (p) ≈ 1 − ω + ωd + ω(c − d)

3
· 2p3 + u(p)(1 − 3p3)

p2 + u(p)(1 − 2p)
. (22)

Thus, for weak selection and large population size,

f̄τ̄ (1/N) − ḡτ̄ (1/N) ≈ ω(b − d) + ω(a − b − (c − d))

3
= ωα

(
1

3
− x�

)

when p = 1/N .
Assume that A and B are both strict NE (i.e. α > 0 and 0 < x� < 1). Clearly, f̄τ̄ (1/N) −

ḡτ̄ (1/N) > 0 if and only if x� < 1/3. This result yields another interpretation of the one-
third law of Nowak et al. [16] that provides a possible theoretical explanation why the one-
third law should be considered a natural result of frequency-dependent selection. That is,
the one-third law can be equivalently stated as follows: under weak selection and large
population size, if the average fitness of A is greater than the average fitness of B about the
mean effective fixation time τ̄ (1/N), then the fixation probability of A, u(1/N), is greater
than 1/N .

In particular, the one-third law implies that the difference between the average fitnesses
of A and B about the mean effective fixation time is positive when a single A-individual is
initially present in a large population that consists otherwise of B-individuals. The positivity
of the average Malthusian fitness of A considered by Ohtsuki et al. [17] assumes a uniform
distribution of the strategy frequency x, whereas average fitnesses about the mean effective
fixation time are based directly on the (non uniform) frequency distribution of the diffusion
process.

6 Expected Fitness and Risk dominance

As discussed in Sect. 3, although Nowak et al. [16] emphasized the one-third law, they
also pointed out that, when A and B are strict NE, ρA > ρB (i.e. A is more likely to re-
place B than vice versa) under the Moran process with weak selection and large popula-
tion size if and only if A is risk dominant (i.e. x� < 1/2). Using the results of Sect. 5, a
similar connection can be made between risk dominance and average fitness differences
about the mean effective fixation time when A is initially rare to when B is initially rare.
In this section, we show instead that risk dominance of A implies that the expected fit-
ness of A is larger than that of B under the stationary distribution of the diffusion ap-
proximation that includes a small mutation term used to eliminate the absorbing bound-
aries.

Assume that μ is the mutation rate from A to B as well as from B to A. Following the
approach of Traulsen et al. [22], the transition probabilities in (4) are changed to

π+(x) = (1 − x)
xf (x)(1 − μ) + (1 − x)g(x)μ

xf (x) + (1 − x)g(x)
,

(23)
π−(x) = x

xf (x)μ + (1 − x)g(x)(1 − μ)

xf (x) + (1 − x)g(x)
,

while the drift and diffusion terms in (6) become
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D(1)(x) = x(1 − x)
f (x) − g(x)

xf (x) + (1 − x)g(x)
+ μ

−xf (x) + (1 − x)g(x)

xf (x) + (1 − x)g(x)
,

(24)

D(2)(x) = 1

2N

[
x(1 − x)

f (x) + g(x)

xf (x) + (1 − x)g(x)
+ (2x − 1)μ

xf (x) − (1 − x)g(x)

xf (x) + (1 − x)g(x)

]
.

Moreover, the stationary distribution of (6) is given by7

φ(x) = C

D(2)(x)
e

∫ x
0

D(1)(s)

D(2)(s)
ds

, (25)

where C = [∫ 1
0

1
D(2)(x)

e
∫ x

(D(1)(s)/D(2)(s)) ds dx]−1 is the normalization constant [18].
For weak selection,

D(1)(x) ≈ x(1 − x)ωα
(
x − x�

) + (1 − 2x)μ,

D(2)(x) ≈ 1

2N

[
2x(1 − x) + (1 − 2x)2μ

]
.

Thus, the stationary distribution is approximated by

φ(x) ≈ 2CN

2x(1 − x) + (1 − 2x)2μ
exp

[∫ x

0
2N

s(1 − s)ωα(s − x�) + (1 − 2s)μ

2s(1 − s) + (1 − 2s)2μ
ds

]
. (26)

In particular, when ω = 0, φ(x) is symmetric about x = 1
2 (i.e. φ( 1

2 + t) = φ( 1
2 − t) for

0 ≤ t ≤ 1
2 ) since the skew-symmetry of (1−2s)μ

2s(1−s)+(1−2s)2μ
implies that

∫ t= 1
2

t− 1
2

2N
(1 − 2s)μ

2s(1 − s) + (1 − 2s)2μ
ds = 0.

This result also follows from the classical theory of neutral selection [10] and is illustrated
by Traulsen et al. [22, Fig. 1] who show that φ(x) has its maximum at x = 1/2 if the
mutation rate μ is large and its minimum there if μ is small. More important for us is that,
by the same reasoning, φ(x) is symmetric about x = 1

2 when x∗ = 1
2 . Thus, this stationary

distribution’s expected value 〈x〉 ≡ ∫ 1
0 xφ(x)dx (i.e. the expected frequency of strategy A)

satisfies 〈x〉 = 1
2 .

Now assume that A and B are strict NE and that A is risk dominant (i.e. α > 0 and
0 < x∗ < 1

2 ). For weak selection,

φ(x) ≈ 2CN

2x(1 − x) + (1 − 2x)2μ

× exp

[∫ x

0
2N

s(1 − s)ωα((s − 1
2 ) + ( 1

2 − x�)) + (1 − 2s)μ

2s(1 − s) + (1 − 2s)2μ
ds

]

= 2CN

2x(1 − x) + (1 − 2x)2μ
exp

[∫ x

0
2N

s(1 − s)ωα(s − 1
2 ) + (1 − 2s)μ

2s(1 − s) + (1 − 2s)2μ
ds

]

× exp

(
1

2
− x�

)[∫ x

0

2Ns(1 − s)ωα

2s(1 − s) + (1 − 2s)2μ
ds

]
. (27)

7The Fokker–Planck equation (6) with D(1)(x) and D(2)(x) given in (24) has a unique stationary distribution
since this diffusion process no longer has absorbing boundaries.
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That is, the stationary distribution when 0 < x∗ < 1
2 is (the renormalization of) the symmet-

ric stationary distribution for x∗ = 1
2 multiplied by the positive function

exp

(
1

2
− x�

)[∫ x

0

2Ns(1 − s)ωα

2s(1 − s) + (1 − 2s)2μ
ds

]

that increases in x. This implies that 〈x〉 > 1
2 when 0 < x∗ < 1

2 .
The last result can be restated in terms of the difference between the expected fitnesses

of A and B under weak selection. From (3), this is

〈
f (x) − g(x)

〉 ≈ ωα
(〈x〉 − x�

)
.

Since 〈x〉 > x∗ and α > 0, 〈f (x) − g(x)〉 > 0 when x� < 1/2. The corresponding analysis
when x� > 1/2 shows 〈f (x) − g(x)〉 < 0. That is, A has higher expected fitness than B if
and only if it the risk-dominant NE.

The same conclusion can be made when expected fitness with respect to the stationary
distribution is replaced by average fitness with respect to the uniform distribution used by
Ohtsuki et al. [17]. Specifically, the average fitness of strategy A is greater than B if and
only if x� < 1/2 since

∫ 1
0 (f (x) − g(x)) dx ≈ ωα

∫ 1
0 (〈x〉 − x�) dx = ωα( 1

2 − x�). However,
our result based on the nonuniform stationary distribution is more relevant to the stochastic
process underlying the diffusion approximation. For example, the strategy with higher ex-
pected fitness is also known as the stochastically stable NE that is selected in models that
incorporate small errors in strategy choice [9, 19].

7 Conclusion

In this paper, following Traulsen and Hauert [21] and Ohtsuki et al. [17], properties of the
fixation probability and mean effective fixation time for the Moran process are investigated
using the diffusion approximation. The analysis leads to several new interpretations of se-
lection favoring strategy A under weak selection. In the following summary of our results,
we assume that A and B are both strict Nash equilibria of the two-strategy game.

The first property (Sect. 3) confirms the weak selection result that Nowak et al. [16] ob-
tained for the Moran process (i.e. selection favors strategy A when population size is large
if this strategy satisfies the one-third law) remains valid for the diffusion approximation. In
Sect. 4, we show that the mean effective fixation time τ̄ (p) (here, p is the initial frequency of
strategy in the finite population) can be divided into two parts, τ̄1(p) and τ̄2(p), where τ̄1(p)

represents the mean effective fixation time meeting A-individuals and τ̄2(p) the mean effec-
tive fixation time meeting B-individuals. Then, for weak selection (i.e. Nω � 1) and large
population size, the ratio τ̄1(1/N)/τ̄ (1/N) is about 1/3, and the ratio τ̄2(1/N)/τ̄ (1/N) is
about 2/3. This result provides a new perspective on the calculation for the Moran process
done by Ohtsuki et al. [17] who emphasized that, in one invasion attempt by strategy A,
an individual interacts on average with B-individuals twice as often as with A-individuals,
which yields the one-third law.

On the other hand, in the weak selection limit with p = 1/N , the average fitness of A

about the mean effective fixation time is bigger than the average fitness of B about the
mean effective fixation time if x� < 1/3 (Sect. 5). This gives a natural interpretation of the
one-third law as a means to predict when selection favors A. Ohtsuki et al. [17] instead
emphasized that the one-third law implies that the average Malthusian fitness of A under the
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uniform distribution is positive. In our model, this comparison is directly connected to the
stochastic process in that the one-third law implies that the difference between the average
fitnesses of A and B about the mean effective fixation time is positive. In Sect. 6, we show
that the expected fitness of A under the stationary distribution of the diffusion approximation
with small mutation is larger than the expected fitness of B if strategy A is risk dominant.
This result gives an alternative meaning to the notion of selection favoring A more than B

originally considered in terms of their fixation probabilities by Nowak et al. [16].
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Appendix A

A.1 The Fokker–Planck Equation

First, we derive the Fokker–Planck equation (6) from (5). For large N , the probability den-
sities, φ(x; t +1/N) and φ(x ±1/N; t), and the transition probabilities, π±(x ∓1/N) have
Taylor series expansions at x and t given by

φ(x; t + 1/N) ≈ φ(x; t) + ∂

∂t
φ(x; t) 1

N
,

φ(x ± 1/N; t) ≈ φ(x; t) ± ∂

∂x
φ(x; t) 1

N
+ ∂2

∂x2
φ(x; t) 1

2N2
, (28)

π±(x ∓ 1/N) ≈ π±(x) ∓ ∂

∂x
π±(x)

1

N
+ ∂2

∂x2
π±(x)

1

2N2
.

From the first (linear) expansion, the left-hand side of (5) is φ(x; t + 1/N) − φ(x; t) ≈
∂
∂t

φ(x; t) 1
N

. The other two expansions, the second order approximations of terms on the
right-hand side of (5) are

φ(x − 1/N; t)π+(x − 1/N) ≈ φ(x; t)π+(x) + φ(x; t)
[
− ∂

∂x
π+(x)

1

N
+ ∂2

∂x2
π+(x)

1

2N2

]

− π+(x)
∂

∂x
φ(x; t) 1

N
+

(
∂

∂x
φ(x; t)

)(
∂

∂x
π+(x)

)
1

N2

+ π+(x)
∂2

∂x2
φ(x; t) 1

2N2
,

φ(x + 1/N; t)π−(x + 1/N) ≈ φ(x; t)π−(x) + φ(x; t)
[

∂

∂x
π−(x)

1

N
+ ∂2

∂x2
π−(x)

1

2N2

]

+π−(x)
∂

∂x
φ(x; t) 1

N
+

(
∂

∂x
φ(x; t)

)(
∂

∂x
π−(x)

)
1

N2

+ π−(x)
∂2

∂x2
φ(x; t) 1

2N2
.
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That is, the right-hand side of (5) up to second order terms becomes

φ(x; t)
[
− ∂

∂x
π+(x)

1

N
+ ∂2

∂x2
π+(x)

1

2N2

]
− π+(x)

∂

∂x
φ(x; t) 1

N

+
(

∂

∂x
φ(x; t)

)(
∂

∂x
π+(x)

)
1

N2

+ π+(x)
∂2

∂x2
φ(x; t) 1

2N2
+ φ(x; t)π−(x)

+ φ(x; t)
[

∂

∂x
π−(x)

1

N
+ ∂2

∂x2
π−(x)

1

2N2

]

+ π−(x)
∂

∂x
φ(x; t) 1

N
+

(
∂

∂x
φ(x; t)

)(
∂

∂x
π−(x)

)
1

N2

= φ(x; t)
[

∂(π−(x) − π+(x))

∂x

1

N

]
+ (

π−(x) − π+(x)
) 1

N

∂φ(x; t)
∂x

+ ∂2(π−(x) + π+(x))

∂x2

1

2N2

+
(

∂

∂x
φ(x; t)

)(
∂

∂x

(
π−(x) + π+(x)

)) 1

N2
+ (

π−(x) + π+(x)
) 1

2N2

∂2φ(x; t)
∂x2

= 1

N

∂φ(x; t)(π−(x) − π+(x))

∂x
+ 1

2N2

∂2φ(x; t)(π−(x) + π+(x))

∂x2
.

Equating the left and right hand approximations of (5) results in (6).

A.2 The Backward Equation

Second, we derive the backward equation (9) as the diffusion approximation to

φ(x;p, t + 1/N) = π+(p)φ(x;p + 1/N, t) + π−(p)φ(x;p − 1/N, t)

+ [
1 − π+(p) − π−(p)

]
φ(x;p, t).

From the Taylor expansions in above equation applied to the variables p and t in φ(x;p, t),

φ

(
x;p, t + 1

N

)
− φ(x;p, t) ≈ 1

N

∂φ(x;p, t)

∂t
,

π+(p)

(
φ

(
x;p + 1

N
, t

)
− φ(x;p, t)

)
≈ π+(p)

(
1

N

∂φ(x;p, t)

∂p
+ 1

2N2

∂2φ(x;p, t)

∂p2

)
,

π−(p)

(
φ

(
x;p − 1

N
, t

)
− φ(x;p, t)

)
≈ π−(p)

(
− 1

N

∂φ(x;p, t)

∂p
+ 1

2N2

∂2φ(x;p, t)

∂p2

)
.

Substituting these expressions yields (9). The backward equation can also be obtained di-
rectly from the Fokker–Planck equation without going through the discrete-time Moran pro-
cess [10].
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A.3 Derivation of τ̄1(p) and τ̄2(p)

Recall that τ̄1(p) denotes the mean effective time of meeting A-individuals and τ̄2(p) the
mean effective time of meeting B-individuals before absorption. From (19), we have

τ̄1(p) =
∫ p

0
x
(
π+(x) + π−(x)

)
t (x;p)dx

+
∫ 1

p

x
(
π+(x) + π−(x)

)
t (x;p)dx

=
∫ p

0
2N

(
1 − u(p)

)
x2 dx +

∫ 1

p

2Nu(p)x(1 − x)dx

= 2Np3

3
+ Nu(p)

(
1/3 − p2

)

≈ 1

3
− 1

3N2
,

and

τ̄2(p) =
∫ p

0
(1 − x)

(
π+(x) + π−(x)

)
t (x;p)dx

+
∫ 1

p

(1 − x)
(
π+(x) + π−(x)

)
t (x;p)dx

=
∫ p

0
2N

(
1 − u(p)

)
x(1 − x)dx +

∫ 1

p

2Nu(p)(1 − x)2 dx

= N
(
1 − u(p)

)(
p2 − 2p3/3

) + 2Nu(p)
(
1/3 − p(1 − p) − p3/3

)

≈ 2

3
− 1

N
+ 1

3N2

for weak selection and large population size. These are the expressions given in (20) of the
main text.
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