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A negative relationship between reproductive effort and survival is consistent with life-history.

Evolutionary dynamics and evolutionarily stable strategy (ESS) for the trade-off between survival and

reproduction are investigated using a simple model with two phenotypes, fearfulness and boldness. The

dynamical stability of the pure strategy model and analysis of ESS conditions reveal that: (i) the simple

coexistence of fearfulness and boldness is impossible; (ii) a small population size is favorable to

fearfulness, but a large population size is favorable to boldness, i.e., neither fearfulness, nor boldness is

always favored by natural selection; and (iii) the dynamics of population density is crucial for a proper

understanding of the strategy dynamics.

& 2008 Elsevier Ltd. All rights reserved.
1. Introduction

A negative relationship between reproductive effort and
survival is consistent with life-history (Hansen and Price, 1995;
Kokko, 1998; Kokko et al., 2002). Recently, Sirot (2007) developed
a simple evolutionary game model for the evolution of fearfulness
in wild birds. Flightiness in birds can be affected by many
environmental factors (Burger and Gochfeld, 1991; Gering and
Blair, 1999), but it varies among species, and this variability
remains difficult to explain (Ydenberg and Dill, 1986; Blumstein
et al., 2003, 2005) (see also Sirot, 2007). However, as a reasonable
explanation, this variability should partly originate in the
evolutionary history of the different species or populations
(Blumstein, 2006a, b). Sirot (2007) considered a bird population
undergoing both predator attacks and non-lethal disturbing
events, and assumed that when the population is disturbed,
individuals display only two possible behavior traits, one is called
the fearfulness, and the other the boldness, i.e., fearful individuals
take flight immediately, but bold individuals are on the alert for
some time and then take flight only if the threat proves to be a
real predator attack. The basic idea behind Sirot’s (2007) model is
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al and Evolutionary Biology,

eijing, PR China.

itao@ioz.ac.cn (Y. Tao).

rs.

.

that when the population is under predator attacks, (a) the
fate of each individual not only depends on the way it reacts to
danger, but also on the behavior of its companions, i.e.,
individual’s expected survival probability is frequency-dependent
and (b) a fearful individual has more chances for survival
than a bold, but it also consumes more energy for escaping from
the predator attacks, so its reproductive success is affected
negatively, i.e., high levels of flightness limit the risk of being
killed by predators, but increase the amount of energy lost in
flights during the season (Sirot, 2007). Thus, basically, Sirot’s
model concerns the evolution of trade-off between survival and
reproduction.

For the importance of disturbance regimes in life-history
evolution, Lytel (2001) developed a general disturbance model
that combines the timing, frequency, severity, and predictability
of disturbances with evolutionary life-history theory. Lytel (2001)
thought that his disturbance model allows for the investigation of
several questions: (a) How do disturbance regimes affect life-
history attributes of organisms with complex life cycles, such as
the size at and timing of maturity? (b) How frequently and
predictably must disturbances recur to affect the evolution of
these traits? (c) How does population structure influence the
evolutionary response to disturbance? It is easy to see that the
basic idea of Sirot’s (2007) model is also similar to Lytel (2001),
but Sirot more emphasized that the survival probability of each
individual is frequency-dependent, i.e., the fate of each individual
not only depends on the way it reacts to danger, but also on the
behavior of its companions.
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In this paper, following Sirot (2007) we develop a simple model
to investigate the evolutionary dynamics and evolutionarily stable
strategy (ESS) for the trade-off between survival and reproduction
in a population with asexual reproduction (Maynard Smith, 1982)
and with non-overlapping generations. We focus our attention on
the dynamical properties of the system and the evolutionary
stability of a behavior trait compared to Sirot’s (2007) results. Of
course, there is no any prior reason to guarantee that our model is
true in a real biological system, but it may provide some
revelatory insights for us to understand the evolution of trade-
off between survival and reproduction. The paper is organized as
follows. In Section 2 we present a basic pure strategy model for
the evolutionary dynamics of fearfulness and boldness, Section 3
gives the stability analysis of this model, Section 4 presents the
ESS for the trade-off between survival and reproduction, and
conclusions are presented in Section 5.
2. Basic model

Similar to the hawk–dove model developed by Maynard Smith
(1982), let us construct a thought experiment for the evolution of
fearfulness and boldness. Consider a population undergoing both
predatory attacks and non-lethal disturbing events, where, for
simplicity, we further assume that the reproduction is asexual
(Maynard Smith, 1982) and that the generations are non-over-
lapping. Only two possible behavior traits can be exhibited when
the population is disturbed, one is fearfulness (denoted by Rf ) and
the other boldness (denoted by Rb). The definitions of the
phenotypes Rf and Rb are those of Sirot (2007), i.e., ‘‘when the
population is disturbed, fearful individuals take escape immedi-
ately, but bold individuals are on the alert for some time and then
take escape only if the threat proves to be a real predator attack.’’
However, for the evolution of behavior traits, a reasonable
assumption is that when the population is under predator attacks,
a fearful individual should have more chances for survival since it
always leaves early, but this may be unfavorable for its
reproductive success because of the energy lost (Cresswell et al.,
2000; Sirot, 2007).

In order to investigate the evolutionary dynamics of fearful-
ness and boldness, we consider first a pure strategy model, i.e., we
assume that all individuals are pure strategists. Let nt and mt

denote the numbers of fearful and bold individuals at the start of
generation t, respectively. The total population size is
Nt ¼ nt þmt , and pt ¼ nt=Nt is the frequency of the phenotype
Rf . In order to develop an evolutionary dynamics model, some
definitions and assumptions are needed:
(i)
 During one generation, the number of real predator attacks is
assumed to be a constant, denoted by ca, and, similarly, the
number of simple disturbing events is denoted by cd.
(ii)
 Let the parameter a 2 ð0;1Þ represent the relative probability
that a fearful individual is selected by the predators,
compared with a bold individual. Clearly, if a is near 0, then
the fearful individuals are almost never attacked; conversely,
if a is near 1, then the risk is shared more equally by both
fearful and bold individuals. The parameter bf denotes the
probability that a fearful individual is captured when selected
by the predator, and, similarly, bb the probability that a bold
individual is captured when selected by the predator (see also
Sirot, 2007). In this paper, without loss of generality, we
assume bf ¼ bb ¼ b.
(iii)
 During generation t the expected numbers of fearful and bold
individuals after the i-th attack are denoted by ntðiÞ and mtðiÞ,
respectively. For simplicity, in this paper we neglect stochas-
tic effects, and assume that the population size is large (i.e.,
our analysis is based on the mean field). From (ii), the
probability that a fearful individual is killed at the ðiþ 1Þ-th
attack is

qtðiÞ ¼
ab

½aptðiÞ þ ð1� ptðiÞÞ�NtðiÞ
, (1)

where NtðiÞ ¼ ntðiÞ þmtðiÞ and ptðiÞ ¼ ntðiÞ=NtðiÞ, and the
probability that a bold individual is killed at the ðiþ 1Þ-th
attack is

stðiÞ ¼
b

½aptðiÞ þ ð1� ptðiÞÞ�NtðiÞ
. (2)

Thus, the numbers of fearful and bold individuals after the
ðiþ 1Þ-th attack can be given by

ntðiþ 1Þ ¼ ntðiÞð1� qtðiÞÞ,

mtðiþ 1Þ ¼ mtðiÞð1� stðiÞÞ, (3)

respectively, and the total population size is

Ntðiþ 1Þ ¼ NtðiÞ � b. (4)

Let Vf and Vb denote the expected survival probabilities in
generation t. Note that these probabilities actually depend on
t. Then we have

Vf ¼
Yca�1

i¼0

ð1� qtðiÞÞ

¼ 1�
ab

ðapt þ ð1� ptÞÞNt

� �ca

1�
cab
Nt

� �
UðptÞ,

Vb ¼
Yca�1

i¼0

ð1� stðiÞÞ

¼ 1�
b

ðapt þ ð1� ptÞÞNt

� �ca

1�
cab
Nt

� �
UðptÞ, (5)

where

UðptÞ ¼
1

ptð1� qtð0ÞÞ
ca þ ð1� ptÞð1� stð0ÞÞ

ca
, (6)

i.e., the survival probabilities are frequency- and density-
dependent (the derivation of Eq. (5) is given in Appendix A).
Notice that if a ¼ 0, then we have

UðptÞ ¼
1

pt þ ð1� ptÞ 1�
b

ð1� ptÞNt

� �ca

�
1

1� bca=Nt

since

pt þ ð1� ptÞ 1�
b

ð1� ptÞNt

� �ca

¼ 1�
bca

Nt
þ Oð1=N2

t Þ

� 1�
bca

Nt
.

Thus, Vf ¼ 1 if a ¼ 0, i.e., if a ¼ 0, then the expected survival
probability of fearful individuals is one.
(iv)
 If a fearful individual survives to the time of reproduction,
then the level of its energy reserves can be expressed
simply as

gf ¼ E� ðca þcdÞ�, (7)

where the parameter E represents the total energy gained
during one generation for an individual, and � is the energy
lost per escape. Similarly, if a bold individual survives to the
time of reproduction, then its energy reserves are given by

gb ¼ E�ca�. (8)
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It is assumed that the reproductive success of an individual
increases with the level of its energy reserves. Thus, the
reproductive success of an individual with energy reserves g
at the time of reproduction can be measured by the function

FðgÞ ¼ 1� e�ag, (9)

where a is a constant (Sirot, 2007), i.e., for both fearful and
bold individuals, we have Fðgf Þ ¼ 1� exp½�aðE� ðca þ cdÞ�Þ�
and FðgbÞ ¼ 1� exp½�aðE�ca�Þ�, respectively. It is easy to
see that the function FðrÞ is concave since d2F=dr240.
(v)
 In this model, we assume also that all individuals have the
same background fitness, denoted by WðNtÞ (Maynard Smith,
1982), which can be defined as

WðNtÞ ¼ expðrð1� Nt=KÞÞ, (10)

where r is the intrinsic growth rate, and K is called the
carrying capacity. The background fitness measures indivi-
dual’s fitness if no disturbing event occurs during the
generation.
In the above definitions and assumptions, (i)–(iv) are similar to
Sirot (2007). According to these definitions and assumptions, the
expected numbers of fearful and bold individuals at the start of
generation t þ 1 can be written as

ntþ1 ¼ ntVfFðgf ÞWðNtÞ,

mtþ1 ¼ mtVbFðgbÞWðNtÞ, (11)

where the term VfFðgf ÞWðNtÞ represents the fitness of individuals
with phenotype Rf , and the term VbFðgbÞWðNtÞ the fitness of
individuals with phenotype Rb. For our main goal, we are more
interested in the phenotypic frequency dynamics. Thus, the
dynamics equation (11) can be equivalently expressed as

ptþ1 ¼
ptVfFðgf Þ

ptVfFðgf Þ þ ð1� ptÞVbFðgbÞ
,

Ntþ1 ¼ Nt½ptVfFðgf Þ þ ð1� ptÞVbFðgbÞ�WðNtÞ, (12)

where the term ½ptVfFðgf Þ þ ð1� ptÞVbFðgbÞ�WðNtÞ is the mean
fitness of the population. For simplicity, denote p0 ¼ ptþ1, p ¼ pt ,
N0 ¼ Ntþ1 and N ¼ Nt in the rest of this paper.
3. Stability analysis

In this section, the equilibrium structure of the dynamics given
by Eq. (12) is considered. For convenience, use Ff and Fb to denote
the fitnesses of fearful and bold individuals, respectively, i.e.,

Ff ðp;NÞ ¼ VfFðgf ÞWðNÞ,

Fbðp;NÞ ¼ VbFðgbÞWðNÞ.

Notice that

1�
bca

Nt

� �
optð1� qtð0ÞÞ

ca þ ð1� ptÞð1� stð0ÞÞ
cao1.

Thus, for large population size with bca5N, Ff ðp;NÞ and Fbðp;NÞ

can be approximated as

Ff ðp;NÞ ¼ 1�
ab

ðapþ ð1� pÞÞN

� �ca

1�
bca

N

� �
Fðgf ÞWðNÞ,

Fbðp;NÞ ¼ 1�
b

ðapþ ð1� pÞÞN

� �ca

1�
bca

N

� �
FðgbÞWðNÞ. (13)

When the population consists only of individuals with phenotype
Rf , in order to prevent the extinction of the population, we
assume that

Ff ð1;caÞ41. (14)
Similarly, we assume also that

Fbð0;caÞ41. (15)

3.1. Boundary equilibria

The boundary corresponding to p ¼ 0 is denoted by ð0; N̂Þ
where N̂ is the solution to equation

Fbð0;NÞ ¼ 1�
b
N

� �ca

1�
cab

N

� �
FðgbÞWðNÞ ¼ 1. (16)

Notice that Eq. (16) can be equivalently expressed as

ca ln 1�
b
N

� �
þ ln 1�

cab
N

� �
þ lnFðgf Þ þ r 1�

N

K

� �
¼ 0. (17)

Thus, from Eq. (15), it is easy to see that N̂ must be unique. The
Jacobian matrix of Eq. (12) about ð0; N̂Þ is

J
ð0;N̂Þ ¼

Ff ð0; N̂Þ 0

N̂
qðpFf þ ð1� pÞFbÞ

qp

����
ð0;N̂Þ

1þ N̂
qFbðp;NÞ

qN

����
ð0;N̂Þ

0
BB@

1
CCA, (18)

where Ff ð0; N̂Þ ¼ ð1� ab=N̂Þca ð1� cab=N̂ÞFðgf ÞWðN̂Þ, and

qFbðp;NÞ

qN

����
ð0;N̂Þ

¼
cab

N̂ðN̂ � bÞ
þ

cab
N̂ðN̂ �cabÞ

�
r

K
. (19)

It is easy to see that the eigenvalues of the matrix J
ð0;N̂Þ are Ff ð0; N̂Þ

and 1þ N̂ðqFbðp;NÞ=qNÞj
ð0;N̂Þ, respectively. Thus, the boundary

equilibrium ð0; N̂Þ is locally asymptotically stable if the eigenva-
lues are less than 1 in absolute value, that is

N̂4
abFðgf Þ

1=ca � bFðgbÞ
1=ca

Fðgf Þ
1=ca �FðgbÞ

1=ca
,

� 2o
cab

N̂ � b
þ

cab
N̂ � cab

�
rN̂

K
o0. (20)

Similar to ð0; N̂Þ, for the boundary corresponding to p ¼ 1, denoted
by ð1; Ñ Þ, Ñ must be also a unique solution to equation
Ff ð1; Ñ Þ ¼ 1, and ð1; Ñ Þ is locally asymptotically stable if

Ño
1

a �
abFðgf Þ

1=ca � bFðgbÞ
1=ca

Fðgf Þ
1=ca �FðgbÞ

1=ca
,

� 2o
cab
Ñ � b

þ
cab

Ñ � cab
�

rÑ

K
o0. (21)

Thus, Eqs. (20) and (21) show that it is possible to have, at both
evolutionary and population dynamics equilibria, populations
with only fearful individuals, and populations with only bold
individuals. Eqs. (20) and (21) imply also that the fearful
population is stable on the population size if its equilibrium size
is small, and that the bold population is stable on the population
size if its equilibrium size is large. However, for both fearful and
bold populations, if the intrinsic growth rate r does not satisfy

�24
cab

N � B
þ

cab
N � cab

�
rN

K
40

there will be a periodic or chaotic attractor about population size
(see Fig. 1).
3.2. Interior equilibrium

Let ðp�;N�Þ denote the interior equilibrium of Eq. (12), i.e.,
ðp�;N�Þ is the solution to equation Ff ðp;NÞ ¼ Fbðp;NÞ ¼ 1. It is easy
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Fig. 1. The effects of parameter r on the equilibrium structure of Eq. (12). The parameters are taken as a ¼ 0:2, b ¼ 0:8, ca ¼ 40, cd ¼ 40, K ¼ 500, a ¼ 0:1, E ¼ 20, and

� ¼ 0:1. The dynamical behaviors of n, m, N, and p with the increase in parameter r are plotted in (a), (b), (c), and (d), respectively. These numerical solutions show clearly

that (i) the simple coexistence of fearfulness and boldness is impossible; (ii) if ro2:38, then the fearful population is stable if the population size is small, and the bold

population is stable if the population size is large; and (iii) if r42:38, then for both fearful and bold populations, the existence of a periodic or chaotic attractor will be

possible.
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to see that p� can be expressed as

p� ¼
1

1� a 1�
1

N�
�
abFðgf Þ

1=ca � bFðgbÞ
1=ca

Fðgf Þ
1=ca �FðgbÞ

1=ca

" #
, (22)

and N� is the solution to equation

1�
aFðgf Þ

1=ca �FðgbÞ
1=ca

Fðgf Þ
1=ca �FðgbÞ

1=ca

 !ca

1�
cab
N�

� �
FðgbÞWðN

�
Þ ¼ 1. (23)

Clearly, ðp�;N�Þ must be unique if it exists, and N� satisfies

cab
N�ðN� �cabÞ

�
r

K
o0. (24)

It is also easy to see that the interior equilibrium ðp�;N�Þ must be
unstable (the proof is given in Appendix A).

From Eq. (22), if the interior equilibrium ðp�;N�Þ exists, i.e.,
0op�o1 and N�40, then we must have

N�4
abFðgf Þ

1=ca � bFðgbÞ
1=ca

Fðgf Þ
1=ca �FðgbÞ

1=ca

and

N�o
1

a �
abFðgf Þ

1=ca � bFðgbÞ
1=ca

Fðgf Þ
1=ca �FðgbÞ

1=ca
.

Since qFbðp;NÞ=qpo0 and qFf ðp;NÞ=qpo0, i.e., ÑoN�oN̂ if p� 2

ð0;1Þ and N�40, the existence of the interior stable periodic or
chaotic attractor is impossible. This shows that if the interior
equilibrium ðp�;N�Þ exists, then the two boundary attractors
corresponding to boundary equilibria ð0; N̂Þ and ð1; Ñ Þ, respec-
tively, must be stable, where the boundary attractors include the
stable fixed points, and periodic and chaotic fluctuations. For the
effects of parameter r on the dynamical behavior of the system,
the results of numerical simulation are plotted in Fig. 1.
These results show clearly that the analytic result of Eq. (12)
is true.

The stability analysis of Eq. (12) reveals that the phenotypes Rf

and Rb cannot simply coexist under the natural selection, i.e., if all
individuals are pure strategists, then fearful and bold individuals
cannot coexist. Biologically, this result can be explained by the
‘dilution effects’ (Hamilton, 1971; Dehn, 1990), i.e., individuals are
safer because each individual in a population has a smaller chance
of being the one attacked (Dehn, 1990). If most of the individuals
in the population are bold, a large population size can reduce the
risk of each individual when the population is under predator
attacks, i.e., bold individuals have a higher expected fitness than
fearful individuals. Conversely, if most of the individuals are
fearful, bold individuals will be concentratively attacked when the
population is under predator attacks since fearful individuals
always leave early. Thus, neither fearfulness, nor boldness is
always favored by natural selection.

4. Evolutionarily stable strategy

In the above section, we consider only the dynamical proper-
ties of the pure strategy model, i.e., all individuals are pure
strategists. In this section, ESS for the trade-off between survival
and reproduction is considered.

Suppose that an individual uses a mixed strategy, denoted by
u ¼ ðu;1� uÞ, i.e., when the population is disturbed, this indivi-
dual exhibits phenotype Rf with probability u, and phenotype Rb

with complementary probability 1� u. According to this defini-
tion, phenotypes Rf and Rb can be also denoted by ð1;0Þ and ð0;1Þ,
respectively. In a population with fearfulness level p (i.e., the
frequency of phenotype Rf in the population is p), the fitness of an
individual with phenotype u, denoted by Fuðp;NÞ, is given by

Fuðp;NÞ ¼ HuFðguÞWðNÞ, (25)
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Fig. 2. A mixed strategy u� ¼ ðu� ;1� u�Þ is an ESS if and only if (i) uoptðu�;NÞ is in

the interval 0ouoptðu� ;NÞo1 and (ii) u� is the solution to the equation uoptðu� ;NÞ ¼

u� (see the text). Here, as an example, the parameters are taken as a ¼ 0:4, b ¼ 0:8,

ca ¼ 50, cd ¼ 50, a ¼ 0:1, E ¼ 20, and � ¼ 0:1. The red curve represents the

function u�ðNÞ (i.e., the solution to equation uoptðu�;NÞ ¼ u�), which corresponds to

a mixed ESS strategy. A mixed ESS depends strongly on the population size, and for

the existence of a mixed ESS, the population size must be in the interval

167oNo208. For convenience, in this figure, the fitness of individual with

phenotype u ¼ ðu;1� uÞ is represented by the color (where the fitness value is

denoted by the color bar). It is easy to see that for a given population size N in the

interval 167oNo208, the fitness of a u�-strategist must be bigger than the fitness

of a u-strategist for all possible uau� .
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where

Hu ¼ 1�
ðuaþ ð1� uÞÞb
ðapþ ð1� pÞÞN

� �ca

1�
cab

N

� �
(26)

with that Vu ¼ HuUðpÞ is the expected survival probability of
individuals with phenotype u (see the definitions and assump-
tions in Section 2), and

gu ¼ E� ðca þ ucdÞ� (27)

the level of energy reserves. Notice that fitness exhibits the
constant term ð1�cab=NÞWðNÞ. Thus, in order to define an ESS,
we can use the function

Guðp;NÞ ¼ 1�
uaþ ð1� uÞð Þb
apþ ð1� pÞð ÞN

� �ca

FðguÞ (28)

to represent fitness.
It is easy to show that equation qGuðp;NÞ=qu ¼ 0 must have a

unique solution, denoted by umaxðp;NÞ, that corresponds to the
maximum of Guðp;NÞ (see Appendix A). From this property, we can
define that for given ðp;NÞ, uoptðp;NÞ corresponds to an optimal
strategy, denoted by uoptðp;NÞ ¼ ðuopt;1� uoptÞ, where uopt ¼ 1 if
umaxX1, uopt ¼ umax if umax 2 ð0;1Þ, and uopt ¼ 0 if umaxo0 (see
also Sirot, 2007).

Let u� ¼ ðu�;1� u�Þ be an ESS, i.e., if all individuals adopt
strategy u�, then no mutant strategy could invade the population
under the influence of natural selection (Maynard Smith, 1982).
Then, we have

Gu� ðu
�;NÞ4Guðu

�;NÞ (29)

for all possible uau�. This is a strict Nash equilibrium (Maynard
Smith, 1982; Cressman, 1992; Hofbauer and Sigmund, 1998).
Obviously, the pure strategy Rf is an ESS if

No
ð1� aÞbca

a
acd�
Fðgf Þ

1�Fðgf Þ

� �" #�1

þ b (30)

since Gf ð1;NÞ4Guð1;NÞ with uo1 is equivalent to uoptð1;NÞX1,
i.e.,

dGuð1;NÞ

du

����
u¼1

X0.

Similarly, the pure strategy Rb is an ESS if

N4
ð1� aÞbca

a
acd�
FðgbÞ

ð1�FðgbÞÞ

� ��1

þ
b
a

. (31)

Finally, a mixed strategy u� ¼ ðu�;1� u�Þ is an ESS if and only if
the optimal strategy uoptðu�;NÞ corresponding to Guðu�;NÞ satis-
fies: (i) uoptðu�;NÞ is in the interval 0ouoptðu�;NÞo1, which holds
if and only if

ð1� aÞbca

ðau� þ ð1� u�ÞÞN � b
4

acd�
FðgbÞ

ð1�FðgbÞÞ,

ð1� aÞbca

au� þ ð1� u�Þð ÞN � ab
o

acd�
Fðgf Þ

1�Fðgf Þ

� �
(32)

and (ii) u� is the solution to the equation uoptðu�;NÞ ¼ u�.
Eqs. (30)–(32) show that the ESS conditions depend strongly

on the population size. The ESS conditions for the pure strategies
fearfulness and boldness imply that a small population size is
favorable to the phenotype Rf , but a large population size is
favorable to the phenotype Rb, i.e., the fearfulness is an ESS if the
population size is less than the threshold

ðð1� aÞbca=aÞ½acd�ð1�Fðgf ÞÞ=Fðgf Þ�
�1 þ b,
and boldness is an ESS if the population size is larger than the
threshold

ðð1� aÞbca=aÞ½acd�ð1�FðgbÞÞ=FðgbÞ�
�1 þ b=a.

Theoretically, a mixed ESS strategy seems to be possible in our
simple model, and it may represent a reasonable trade-off between
survival and reproduction at individual level, but we have to notice
also that the conditions of a mixed ESS strategy are very rigorous,
i.e., if a mixed strategy u� is an ESS, then it must be the solution to
the equation uoptðu�;NÞ ¼ u�, i.e., u� should be in general a function
of population size N, where N is in a given interval that is
determined by Eq. (32) (see Fig. 2). Thus, if we assume that only
two pure strategies (fearfulness and boldness) are possible, then we
may have no any prior reasons, or evidences, to believe that a
mixed ESS strategy can be maintained in a real biological system.
5. Summary

In this paper, the evolutionary dynamics of fearfulness and
boldness and evolutionarily stable strategy (ESS) for the trade-off
between survival and reproduction are investigated using a
simple two-phenotype model. The basic framework of the model
is mainly from Sirot (2007). In this paper we focus our attention
on the relationship between the dynamical properties of the
system and evolutionary stability of behavior traits compared to
Sirot’s (2007) results. For the dynamical stability of the pure
strategy model, our results show that the simple coexistence of
two pure strategies, fearfulness and boldness, is impossible, i.e., if
all individuals are pure-strategists, then fearful and bold indivi-
duals cannot coexist. This means that no any interior stable
attractor can exist, and the system state will be eventually
attracted by the boundary attractors. Biologically, this result
implies that neither fearfulness nor boldness is always favored by
natural selection. For the evolutionary stability of behavior traits,
we show that the ESS conditions depend strongly on the
population size. The ESS conditions for the pure strategies imply
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that a small population size is favorable to fearfulness, but a large
population size is favorable to boldness. On the other hand, the
existence of a mixed ESS strategy is possible in our simple model,
and it may represent a trade-off between survival and reproduc-
tion with evolutionary advantages, but its conditions are very
rigorous. Thus, it remains difficult to explain whether a mixed ESS
strategy can occur in a real biological system. Finally, we show
that the dynamics of population density is crucial for a proper
understanding of the strategy dynamics, and the main difference
between our results and Sirot’s (2007) is that Sirot considered
only the situation with fixed population size but we show clearly
the relationship between the evolutionary stability of fearfulness
(boldness) and population size.
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Appendix A

A.1. Derivation of Eq. (5)

Notice that at the end of generation t the expected numbers of
fearful and bold individuals are

ntðcaÞ ¼ nt

Yca�1

i¼0

ð1� qtðiÞÞ,

mtðcaÞ ¼ mt

Yca�1

i¼0

ð1� stðiÞÞ, (33)

respectively. Notice also that

ntðcaÞ

mtðcaÞ
�

nt

mt

1� qtð0Þ

1� stð0Þ

� �ca

¼
pt

1� pt

1� qtð0Þ

1� stð0Þ

� �ca

(34)

since

1� qtðiÞ

1� stðiÞ
¼

1� qtðiþ 1Þ

1� stðiþ 1Þ
þ Oð1=N2

t Þ (35)

for all i ¼ 1;2; . . . ;ca � 1. Thus, Eq. (35) can be rewritten as

ntðcaÞ ¼ ðNt �cabÞ
ptð1� qtð0ÞÞ

ca

ptð1� qtð0ÞÞ
ca þ ð1� ptÞð1� stð0ÞÞ

ca

¼ ntð1� qtð0ÞÞ
ca 1�

cab
Nt

� �
UðptÞ,

mtðcaÞ ¼ ðNt �cabÞ
ð1� ptÞð1� stð0ÞÞ

ca

ptð1� qtð0ÞÞ
ca þ ð1� ptÞð1� stð0ÞÞ

ca

¼ mtð1� stð0ÞÞ
ca 1�

cab
Nt

� �
UðptÞ, (36)

where UðptÞ is given in Eq. (6). So, Eq. (5) can be obtained.

A.2. Stability analysis of interior equilibrium ðp�;N�Þ

The Jacobian matrix of Eq. (12) about the interior equilibrium
ðp�;N�Þ is

Jðp� ;N�Þ ¼

1þ pð1� pÞ
qFf

qp
�
qFb

qp

� �
pð1� pÞ

qFf

qN
�
qFb

qN

� �

N p
qFf

qp
þ ð1� pÞ

qFb

qp

� �
1þ N p

qFf

qN
þ ð1� pÞ

qFb

qN

� �
0
BBB@

1
CCCA
���������
ðp� ;N�Þ

,

(37)
where

qFf ðp;NÞ

qp

����
ðp� ;N�Þ

¼ �
að1� aÞbca

ðap� þ ð1� p�ÞÞHf
,

qFbðp;NÞ

qp

����
ðp� ;N�Þ

¼ �
ð1� aÞbca

ðap� þ ð1� p�ÞÞHb
,

qFf ðp;NÞ

qN

����
ðp� ;N�Þ

¼
abca

N�Hf
þ

cab
N�ðN� �cabÞ

�
r

K
,

qFbðp;NÞ

qN

����
ðp� ;N�Þ

¼
bca

N� Hb
þ

cab
N�ðN� �cabÞ

�
r

K
, (38)

where

Hf ¼ ðap� þ ð1� p�ÞÞN� � ab,

Hb ¼ ðap� þ ð1� p�ÞÞN� � b. (39)

The characteristic equation of the matrix Jðp� ;N�Þ is given by

UðlÞ ¼ l2
� lð2þ AÞ þ ð1þ AÞ þ B

¼ 0, (40)

where

A ¼ p�ð1� p�Þ
qFf

qp
�
qFb

qp

� �
þ N� p�

qFf

qN
þ ð1� p�Þ

qFb

qN

� �
,

B ¼ p�ð1� p�ÞN�
qFf

qp
�
qFb

qN
�
qFb

qp
�
qFf

qN

� �
, (41)

where

qFf

qp
�
qFb

qp
¼
ð1� aÞ2bcaN�

Hf Hb
,

p�
qFf

qN
þ ð1� p�Þ

qFb

qN
¼

bca

Hf HbN�
½ðap� þ ð1� p�ÞÞ

� ðp�aþ ð1� p�ÞÞN� � ab�

þ
cab

N�ðN� � cabÞ
�

r

K
,

qFf

qp
�
qFb

qN
�
qFb

qp
�
qFf

qN
¼
ð1� aÞ2bcaN�

Hf Hb

cab
N�ðN� �cabÞ

�
r

K

� �
. (42)

Notice that the eigenvalues of the matrix Jðp� ;N�Þ, i.e., the solution to
equation UðlÞ ¼ 0, are given by

l1;2 ¼ 1þ
A�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2
� 4B

p
2

. (43)

Thus, the interior equilibrium ðp�;N�Þmust be unstable since Bo0.
A.3. Existence and uniqueness of the solution to equation

qGuðp;NÞ ¼ 0

From Eq. (28), notice that

q ln Guðp;NÞ

qu
¼

ð1� aÞbca

ðapþ ð1� pÞÞN � uab� ð1� uÞb

�
acd�
FðguÞ

ð1�FðguÞÞ,

q2 ln Guðp;NÞ

qu2
¼ �

ð�aÞ2b2ca

½ðapþ ð1� pÞÞN � uab� ð1� uÞb�2

�
ðacd�Þ

2

FðguÞ
ð1�FðguÞÞ

o0, (44)
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and that

q
qu

ð1� aÞbca

ðapþ ð1� pÞÞN � uab� ð1� uÞb

� �

¼ �
ð1� aÞ2b2ca

½ðapþ ð1� pÞÞN � uab� ð1� uÞb�2

o0,

q
qu

acd�
FðguÞ

ð1�FðguÞÞ

� �
¼
ðacd�Þ

2

FðguÞ
2
ð1�FðguÞÞ40, (45)

for given ðp;NÞ. Thus, equation qGuðp;NÞ=qu ¼ 0 must have a
unique solution, denoted by umaxðp;NÞ, that corresponds to the
maximum of Guðp;NÞ.
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