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A negative relationship between reproductive effort and survival is consistent with life-history.
Evolutionary dynamics and evolutionarily stable strategy (ESS) for the trade-off between survival and
reproduction are investigated using a simple model with two phenotypes, fearfulness and boldness. The
dynamical stability of the pure strategy model and analysis of ESS conditions reveal that: (i) the simple
coexistence of fearfulness and boldness is impossible; (ii) a small population size is favorable to
fearfulness, but a large population size is favorable to boldness, i.e., neither fearfulness, nor boldness is
always favored by natural selection; and (iii) the dynamics of population density is crucial for a proper
understanding of the strategy dynamics.

© 2008 Elsevier Ltd. All rights reserved.

1. Introduction

A negative relationship between reproductive effort and
survival is consistent with life-history (Hansen and Price, 1995;
Kokko, 1998; Kokko et al., 2002). Recently, Sirot (2007) developed
a simple evolutionary game model for the evolution of fearfulness
in wild birds. Flightiness in birds can be affected by many
environmental factors (Burger and Gochfeld, 1991; Gering and
Blair, 1999), but it varies among species, and this variability
remains difficult to explain (Ydenberg and Dill, 1986; Blumstein
et al., 2003, 2005) (see also Sirot, 2007). However, as a reasonable
explanation, this variability should partly originate in the
evolutionary history of the different species or populations
(Blumstein, 20064, b). Sirot (2007) considered a bird population
undergoing both predator attacks and non-lethal disturbing
events, and assumed that when the population is disturbed,
individuals display only two possible behavior traits, one is called
the fearfulness, and the other the boldness, i.e., fearful individuals
take flight immediately, but bold individuals are on the alert for
some time and then take flight only if the threat proves to be a
real predator attack. The basic idea behind Sirot’s (2007) model is
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that when the population is under predator attacks, (a) the
fate of each individual not only depends on the way it reacts to
danger, but also on the behavior of its companions, i.e.,
individual’s expected survival probability is frequency-dependent
and (b) a fearful individual has more chances for survival
than a bold, but it also consumes more energy for escaping from
the predator attacks, so its reproductive success is affected
negatively, i.e., high levels of flightness limit the risk of being
killed by predators, but increase the amount of energy lost in
flights during the season (Sirot, 2007). Thus, basically, Sirot’s
model concerns the evolution of trade-off between survival and
reproduction.

For the importance of disturbance regimes in life-history
evolution, Lytel (2001) developed a general disturbance model
that combines the timing, frequency, severity, and predictability
of disturbances with evolutionary life-history theory. Lytel (2001)
thought that his disturbance model allows for the investigation of
several questions: (a) How do disturbance regimes affect life-
history attributes of organisms with complex life cycles, such as
the size at and timing of maturity? (b) How frequently and
predictably must disturbances recur to affect the evolution of
these traits? (c) How does population structure influence the
evolutionary response to disturbance? It is easy to see that the
basic idea of Sirot’s (2007) model is also similar to Lytel (2001),
but Sirot more emphasized that the survival probability of each
individual is frequency-dependent, i.e., the fate of each individual
not only depends on the way it reacts to danger, but also on the
behavior of its companions.
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In this paper, following Sirot (2007) we develop a simple model
to investigate the evolutionary dynamics and evolutionarily stable
strategy (ESS) for the trade-off between survival and reproduction
in a population with asexual reproduction (Maynard Smith, 1982)
and with non-overlapping generations. We focus our attention on
the dynamical properties of the system and the evolutionary
stability of a behavior trait compared to Sirot’s (2007) results. Of
course, there is no any prior reason to guarantee that our model is
true in a real biological system, but it may provide some
revelatory insights for us to understand the evolution of trade-
off between survival and reproduction. The paper is organized as
follows. In Section 2 we present a basic pure strategy model for
the evolutionary dynamics of fearfulness and boldness, Section 3
gives the stability analysis of this model, Section 4 presents the
ESS for the trade-off between survival and reproduction, and
conclusions are presented in Section 5.

2. Basic model

Similar to the hawk-dove model developed by Maynard Smith
(1982), let us construct a thought experiment for the evolution of
fearfulness and boldness. Consider a population undergoing both
predatory attacks and non-lethal disturbing events, where, for
simplicity, we further assume that the reproduction is asexual
(Maynard Smith, 1982) and that the generations are non-over-
lapping. Only two possible behavior traits can be exhibited when
the population is disturbed, one is fearfulness (denoted by Ry) and
the other boldness (denoted by R,). The definitions of the
phenotypes Ry and R, are those of Sirot (2007), i.e., “when the
population is disturbed, fearful individuals take escape immedi-
ately, but bold individuals are on the alert for some time and then
take escape only if the threat proves to be a real predator attack.”
However, for the evolution of behavior traits, a reasonable
assumption is that when the population is under predator attacks,
a fearful individual should have more chances for survival since it
always leaves early, but this may be unfavorable for its
reproductive success because of the energy lost (Cresswell et al.,
2000; Sirot, 2007).

In order to investigate the evolutionary dynamics of fearful-
ness and boldness, we consider first a pure strategy model, i.e., we
assume that all individuals are pure strategists. Let n, and m,
denote the numbers of fearful and bold individuals at the start of
generation t, respectively. The total population size is
N¢ = n; +m¢, and p, = n;/N; is the frequency of the phenotype
R;. In order to develop an evolutionary dynamics model, some
definitions and assumptions are needed:

(i) During one generation, the number of real predator attacks is
assumed to be a constant, denoted by ,, and, similarly, the
number of simple disturbing events is denoted by .

(ii) Let the parameter o € (0, 1) represent the relative probability
that a fearful individual is selected by the predators,
compared with a bold individual. Clearly, if « is near 0, then
the fearful individuals are almost never attacked; conversely,
if o is near 1, then the risk is shared more equally by both
fearful and bold individuals. The parameter fi; denotes the
probability that a fearful individual is captured when selected
by the predator, and, similarly, f3, the probability that a bold
individual is captured when selected by the predator (see also
Sirot, 2007). In this paper, without loss of generality, we
assume fi; = f, = f.

(iii) During generation t the expected numbers of fearful and bold
individuals after the i-th attack are denoted by n.(i) and m(i),
respectively. For simplicity, in this paper we neglect stochas-
tic effects, and assume that the population size is large (i.e.,

(iv)

our analysis is based on the mean field). From (ii), the
probability that a fearful individual is killed at the (i + 1)-th
attack is

op
[ope(d) + (1 = p(NINe (D’
where N(i) = n(i) + m¢(i) and p.(i) = n.(i)/N(i), and the

probability that a bold individual is killed at the (i + 1)-th
attack is

q:() = (1)

B
[op () + (1 = p(NINe(D)*
Thus, the numbers of fearful and bold individuals after the
(i + 1)-th attack can be given by

ne(i+ 1) = ne()(1 — q,(0),

(2)

se(i) =

me(i+ 1) = me()(1 — s¢(i)), (3)
respectively, and the total population size is
Ne(i+ 1) = Ne()) - B (4)

Let V; and V, denote the expected survival probabilities in
generation t. Note that these probabilities actually depend on
t. Then we have
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i.e,, the survival probabilities are frequency- and density-
dependent (the derivation of Eq. (5) is given in Appendix A).
Notice that if « = 0, then we have

1
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Thus, V; =1 if a =0, i.e, if « = 0, then the expected survival
probability of fearful individuals is one.
If a fearful individual survives to the time of reproduction,
then the level of its energy reserves can be expressed
simply as

Vr=E—Wq+¥ge (7)

where the parameter E represents the total energy gained
during one generation for an individual, and ¢ is the energy
lost per escape. Similarly, if a bold individual survives to the
time of reproduction, then its energy reserves are given by

pr+(1 _p[)<]

Vb :E_‘//a‘g' (8)
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It is assumed that the reproductive success of an individual
increases with the level of its energy reserves. Thus, the
reproductive success of an individual with energy reserves y
at the time of reproduction can be measured by the function

P(y)=1—e9, 9)

where a is a constant (Sirot, 2007), i.e., for both fearful and
bold individuals, we have ®(y;) = 1 — exp[—a(E — (, + V/4)8)]
and &(y,) = 1 — exp[—a(E — y,&)], respectively. It is easy to
see that the function &(r) is concave since d*®/dr? >0.

In this model, we assume also that all individuals have the
same background fitness, denoted by W(N;) (Maynard Smith,
1982), which can be defined as

W(Ny) = exp(r(1 — N¢/K)), (10)

where r is the intrinsic growth rate, and K is called the
carrying capacity. The background fitness measures indivi-
dual’s fitness if no disturbing event occurs during the
generation.

—

(v

In the above definitions and assumptions, (i)-(iv) are similar to
Sirot (2007). According to these definitions and assumptions, the
expected numbers of fearful and bold individuals at the start of
generation t + 1 can be written as

Ner = neVe@(yp)W(Ny),
Mg = MV Py, ) W(No), (11)

where the term V¢ ®(y,)W(N,) represents the fitness of individuals
with phenotype Ry, and the term V,®(y,)W(N;) the fitness of
individuals with phenotype R,. For our main goal, we are more
interested in the phenotypic frequency dynamics. Thus, the
dynamics equation (11) can be equivalently expressed as

Doy = PVr®(yp)
T p Vo) + (1= poVy ()’
Ner1 = NelpVi@(yp) + (1 = poVy @) IW(Ny), (12)

where the term [p,V;®(yp) + (1 — p)Vp®(p,)IW(Ne) is the mean
fitness of the population. For simplicity, denote p’ = p,,1, p =p,,
N = N¢;1 and N = N; in the rest of this paper.

3. Stability analysis

In this section, the equilibrium structure of the dynamics given
by Eq. (12) is considered. For convenience, use F; and F, to denote
the fitnesses of fearful and bold individuals, respectively, i.e.,

F(p.N) = Vs &(7)W(N),
Fp(p,N) = V @(y,)W(N).
Notice that

(1 ﬁ‘/’a) <p(1— qt(o))'//u +(1-ppA - Sr(O))'/’a <1.

Thus, for large population size with S, <N, Fy(p,N) and Fy(p,N)
can be approximated as

_ xp Yo (1 _ B
o= (1~ it —pw) (1) 2w
_ B Y (Bl
Fop = (1= o) (1= 55 Joaowan. (13)

When the population consists only of individuals with phenotype
R;, in order to prevent the extinction of the population, we
assume that

Fr(1, ) > 1. (14)

Similarly, we assume also that

Fp(0,y)>1. (15)

3.1. Boundary equilibria

The boundary corresponding to p=0 is denoted by (0,N)
where N is the solution to equation

Va
F,(O,N) = (1 — %) (1 — M) Dy )W(N) = 1. (16)

Notice that Eq. (16) can be equivalently expressed as

waln<1—%)+1n<1—%)+ln¢(w)+r(l—%> =0. (17)

Thus, from Eq. (15), it is easy to see that N must be unique. The
Jacobian matrix of Eq. (12) about (0, N) is

F;(0,N) 0
J((),N) = ”w 1+ NL:b(p’N) ' (18)
op ©O.N) ©.N)
where F;(0,N) = (1 — of/N)/a(1 — ., B/N)D(y)W(N), and
an(P,N) _ waﬁ l1[/aﬁ _ L 19
N |op NN—p)  NE—yp) K 1

It is easy to see that the eigenvalues of the matrix J 5 fy are Fr(0, N)
and 1+ N(@Fb(p N)/aN)|(ON , respectively. Thus, the boundary
equilibrium (0, N) is locally asymptotically stable if the eigenva-
lues are less than 1 in absolute value, that is

o 2P0 e — B () e
Z T v _ %z
(15())[) D(yp)
Wb | VB TN g (20)

TN Ry K

Similar to (0, N), for the boundary corresponding to p = 1, denoted
by (1,N), N must be also a unique solution to equation
Ff(1,N) =1, and (1,N) is locally asymptotically stable if

oo 1 aBeap! e — pop,)! e
o d(yy Y/ D(y, Y1/
P VaB N
—2< 5 [3+N 1//a/377<0 (21)

Thus, Egs. (20) and (21) show that it is possible to have, at both
evolutionary and population dynamics equilibria, populations
with only fearful individuals, and populations with only bold
individuals. Eqs. (20) and (21) imply also that the fearful
population is stable on the population size if its equilibrium size
is small, and that the bold population is stable on the population
size if its equilibrium size is large. However, for both fearful and
bold populations, if the intrinsic growth rate r does not satisfy

Vb | e
NBtN-yp KO

there will be a periodic or chaotic attractor about population size
(see Fig. 1).

3.2. Interior equilibrium

Let (p*,N*) denote the interior equilibrium of Eq. (12), i.e.,
(p*,N") is the solution to equation F¢(p, N) = Fy(p,N) = 1. It is easy
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Fig. 1. The effects of parameter r on the equilibrium structure of Eq. (12). The parameters are taken as o = 0.2, f = 0.8, y, = 40, y; = 40, K = 500, a = 0.1, E = 20, and
& = 0.1. The dynamical behaviors of n, m, N, and p with the increase in parameter r are plotted in (a), (b), (c), and (d), respectively. These numerical solutions show clearly
that (i) the simple coexistence of fearfulness and boldness is impossible; (ii) if r<2.38, then the fearful population is stable if the population size is small, and the bold
population is stable if the population size is large; and (iii) if r>2.38, then for both fearful and bold populations, the existence of a periodic or chaotic attractor will be

possible.

to see that p* can be expressed as
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and N* is the solution to equation
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Clearly, (p*, N*) must be unique if it exists, and N* satisfies
Yab r

B ——<0. 24
NN —J.p K (29
It is also easy to see that the interior equilibrium (p*, N*) must be
unstable (the proof is given in Appendix A).

From Eq. (22), if the interior equilibrium (p*, N*) exists, i.e.,

0<p*<1 and N*>0, then we must have

N aBd(yp)' Ve — pd(y,)' Ve
() Ve — () Ve

and

aBD(yp)' Ve — Bd(y,)!/ Ve
@(«/f)]/'//a _ ¢('yb)]/‘/’u

Since OF,,(p,N)/dp<0 and OF;(p,N)/dp<0, i.e, N<N*<N if p* ¢
(0,1) and N* >0, the existence of the interior stable periodic or
chaotic attractor is impossible. This shows that if the interior
equilibrium (p*, N*) exists, then the two boundary attractors
corresponding to boundary equilibria (0,N) and (1,N), respec-
tively, must be stable, where the boundary attractors include the
stable fixed points, and periodic and chaotic fluctuations. For the
effects of parameter r on the dynamical behavior of the system,
the results of numerical simulation are plotted in Fig. 1.

*

1
o

These results show clearly that the analytic result of Eq. (12)
is true.

The stability analysis of Eq. (12) reveals that the phenotypes Ry
and R, cannot simply coexist under the natural selection, i.e., if all
individuals are pure strategists, then fearful and bold individuals
cannot coexist. Biologically, this result can be explained by the
‘dilution effects’ (Hamilton, 1971; Dehn, 1990), i.e., individuals are
safer because each individual in a population has a smaller chance
of being the one attacked (Dehn, 1990). If most of the individuals
in the population are bold, a large population size can reduce the
risk of each individual when the population is under predator
attacks, i.e., bold individuals have a higher expected fitness than
fearful individuals. Conversely, if most of the individuals are
fearful, bold individuals will be concentratively attacked when the
population is under predator attacks since fearful individuals
always leave early. Thus, neither fearfulness, nor boldness is
always favored by natural selection.

4. Evolutionarily stable strategy

In the above section, we consider only the dynamical proper-
ties of the pure strategy model, i.e., all individuals are pure
strategists. In this section, ESS for the trade-off between survival
and reproduction is considered.

Suppose that an individual uses a mixed strategy, denoted by
u=(u,1-u)), ie, when the population is disturbed, this indivi-
dual exhibits phenotype Ry with probability u, and phenotype R,
with complementary probability 1 — u. According to this defini-
tion, phenotypes Ry and R, can be also denoted by (1, 0) and (0, 1),
respectively. In a population with fearfulness level p (i.e., the
frequency of phenotype Ry in the population is p), the fitness of an
individual with phenotype u, denoted by Fy(p, N), is given by

Fu(p,N) = Hu®P(y,)W(N), (25)
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where

_ ,M)‘””( ,z//aﬁ)
H“‘<1 @p+d-pn) 7N (26)

with that Vy, = HyU(p) is the expected survival probability of
individuals with phenotype u (see the definitions and assump-
tions in Section 2), and

Yu=E— (b +upge (27)

the level of energy reserves. Notice that fitness exhibits the
constant term (1 — y,f/N)W(N). Thus, in order to define an ESS,
we can use the function

3 _(u<x+(1—u))ﬁ>“’“
Gutp.) = (1= 2L 0 (28)

to represent fitness.

It is easy to show that equation 0Gy(p, N)/0u = 0 must have a
unique solution, denoted by umax(p, N), that corresponds to the
maximum of Gu(p, N) (see Appendix A). From this property, we can
define that for given (p,N), uopt(p, N) corresponds to an optimal
strategy, denoted by uopc(p, N) = (Uopt, 1 — Uopt), Where ugpe = 1 if
Umax =1, Uopt = Umax if Umax € (0,1), and ugpr = 0 if Umax <0 (see
also Sirot, 2007).

Let u* = (u*,1 —u*) be an ESS, i.e., if all individuals adopt
strategy u*, then no mutant strategy could invade the population
under the influence of natural selection (Maynard Smith, 1982).
Then, we have

Gu-(U*,N)>Gu(u*,N) (29)

for all possible u=u*. This is a strict Nash equilibrium (Maynard
Smith, 1982; Cressman, 1992; Hofbauer and Sigmund, 1998).
Obviously, the pure strategy Ry is an ESS if

g*f;f"; (1-0p)

-1
N (L= 2BV,
o

+p (30)

since G¢(1,N)>Gyu(1,N) with u<1 is equivalent to uep(1,N)>1,
ie.,

dGu(1,N)

du =0.

u=1

Similarly, the pure strategy R, is an ESS if

(- Y, [awde B
N>-— 274 1-9 +-. 31
o ‘D(Vb)( (Vb)) o (31)
Finally, a mixed strategy u* = (u*,1 — u*) is an ESS if and only if
the optimal strategy uep:(u*,N) corresponding to Gu(u*,N) satis-
fies: (i) uope(u*, N) is in the interval 0 <uoep:(u*,N)<1, which holds
if and only if

(1- a)ﬁ‘//a awd‘g _
G+ A —u)N—f~ agy'' ~ PO
(1 —0py,

ay4e
@ + (1 —uw)N—af ~ D(yp) (l B (D(yf)) (32)
and (ii) u* is the solution to the equation ugpc(u*, N) = u*.

Egs. (30)-(32) show that the ESS conditions depend strongly
on the population size. The ESS conditions for the pure strategies
fearfulness and boldness imply that a small population size is
favorable to the phenotype R, but a large population size is
favorable to the phenotype Ry, i.e., the fearfulness is an ESS if the
population size is less than the threshold

(1 = o)Byrg/lay el — D(yp)/PI + B,

0.575

b

% 0.5 0.55

0.525 1

0.5

170 180 190 200
N

0475 1

Fig. 2. A mixed strategy u* = (u*,1 — u*) is an ESS if and only if (i) uopc(u*, N) is in
the interval 0 <uope(u*, N)<1 and (ii) u* is the solution to the equation ugpc(u*,N) =
u* (see the text). Here, as an example, the parameters are taken as o = 0.4, f = 0.8,
Y, =50, Yy4=50, a=0.1, E=20, and ¢=0.1. The red curve represents the
function u*(N) (i.e., the solution to equation ugp(u*,N) = u*), which corresponds to
a mixed ESS strategy. A mixed ESS depends strongly on the population size, and for
the existence of a mixed ESS, the population size must be in the interval
167 <N<208. For convenience, in this figure, the fitness of individual with
phenotype u = (u,1 — u) is represented by the color (where the fitness value is
denoted by the color bar). It is easy to see that for a given population size N in the
interval 167 <N <208, the fitness of a u*-strategist must be bigger than the fitness
of a u-strategist for all possible u=u*.

and boldness is an ESS if the population size is larger than the
threshold

(A = og/wlay el — D)/ PO + /o

Theoretically, a mixed ESS strategy seems to be possible in our
simple model, and it may represent a reasonable trade-off between
survival and reproduction at individual level, but we have to notice
also that the conditions of a mixed ESS strategy are very rigorous,
i.e., if a mixed strategy u* is an ESS, then it must be the solution to
the equation uep(u*, N) = u*, i.e., u* should be in general a function
of population size N, where N is in a given interval that is
determined by Eq. (32) (see Fig. 2). Thus, if we assume that only
two pure strategies (fearfulness and boldness) are possible, then we
may have no any prior reasons, or evidences, to believe that a
mixed ESS strategy can be maintained in a real biological system.

5. Summary

In this paper, the evolutionary dynamics of fearfulness and
boldness and evolutionarily stable strategy (ESS) for the trade-off
between survival and reproduction are investigated using a
simple two-phenotype model. The basic framework of the model
is mainly from Sirot (2007). In this paper we focus our attention
on the relationship between the dynamical properties of the
system and evolutionary stability of behavior traits compared to
Sirot’s (2007) results. For the dynamical stability of the pure
strategy model, our results show that the simple coexistence of
two pure strategies, fearfulness and boldness, is impossible, i.e., if
all individuals are pure-strategists, then fearful and bold indivi-
duals cannot coexist. This means that no any interior stable
attractor can exist, and the system state will be eventually
attracted by the boundary attractors. Biologically, this result
implies that neither fearfulness nor boldness is always favored by
natural selection. For the evolutionary stability of behavior traits,
we show that the ESS conditions depend strongly on the
population size. The ESS conditions for the pure strategies imply
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that a small population size is favorable to fearfulness, but a large
population size is favorable to boldness. On the other hand, the
existence of a mixed ESS strategy is possible in our simple model,
and it may represent a trade-off between survival and reproduc-
tion with evolutionary advantages, but its conditions are very
rigorous. Thus, it remains difficult to explain whether a mixed ESS
strategy can occur in a real biological system. Finally, we show
that the dynamics of population density is crucial for a proper
understanding of the strategy dynamics, and the main difference
between our results and Sirot’s (2007) is that Sirot considered
only the situation with fixed population size but we show clearly
the relationship between the evolutionary stability of fearfulness
(boldness) and population size.
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Appendix A
A.1. Derivation of Eq. (5)

Notice that at the end of generation t the expected numbers of
fearful and bold individuals are
Ya—1
nWe) =ne [] (1 —aq),
i=0
Wa’]
mg) =me [] (1= se(d)), (33)
i=0

i=

respectively. Notice also that

nGp,) _ ne (1 - q[(0)> Ve

MWy  me \1—s:0)
R 1-4q,(0) Ve
- 125 (i =50) 34

since

1—q,@) 1 - q(i+1
1 —St(i) 1 —St(i+ 1)

foralli=1,2,...,}, — 1. Thus, Eq. (35) can be rewritten as

p(1 =g, (0"
ne(g) = (Nt — ¥of)
(Y (Ne =y p p(1 = q(0)¥s + (1 — p)(1 — 5,(0))¥a
Vob

= m(1 - g0 (158 ) uepo,

(1 —pp(1 — s(0))Ve
pe(1 = q(0))« + (1 — p)(1 — s(0))”e
= m1 =0 (1- 58 ) ugpy, (36)

t

+ O(1/N?) (35)

mt(l//a) = (Nt - l//aﬁ)

where U(p,) is given in Eq. (6). So, Eq. (5) can be obtained.

A.2. Stability analysis of interior equilibrium (p*, N*)

The Jacobian matrix of Eq. (12) about the interior equilibrium

(p*,N") is
OF; OF, OF; OF,
| 1+P(1*P)<@*$> P(lfp)(m*m>
PN = OFf OF) OFf OF,
N(P@‘*‘(l _p)67p) 1 +N<PW+(1 —p)m)

N
(37)

where
OFf(p,N) I e 7
o pny  (@p+ (1 =p)Hf’
RN _ -,
o |pny @+ —p)H,’
aFf(paN) _ O(.Bl//a + l//aﬂ 7£
TN |y, NH; TNV - B K
an(p,N) ﬂl//a lr//aﬁ r
_ _r 38
N gy N Hy NN - K ©8)

where

Hf = (ap* + (1 = p*))N* — af3,
Hp = (ap* + (1 — p*))N* — . (39)

The characteristic equation of the matrix J,. v+, is given by

U)=2-22+A)+1+A)+B

=0, (40)
where
. . (OF; OF, a . OF,
A—P(l—P)<$—E>+N (p m"‘(l—P)m),
.(OFs OF, OF, OF
B - (5 G - ) (an)
where

OFf OF, (1 —o)’By,N*

6p 6p - Hbe ’
p a—N+(] -Dp )a—N— HbeN*[(OCP +(1-p*)
x (p*o+ (1 = p))N* — aff]
2 r

NN —yp K

oy OFy OFy OFp _ (1=aPBhaN'( Waf TN
dp ON O ON_ HiH, N'(N" =y K)

Notice that the eigenvalues of the matrix J,. y-), i.e., the solution to
equation U(A) = 0, are given by

A+ VA*— 4B

)‘,]’2 =1+ 5

(43)
Thus, the interior equilibrium (p*, N*) must be unstable since B<0.

A.3. Existence and uniqueness of the solution to equation
aGu(p, N) =0

From Eq. (28), notice that

dInGu(p,N) _ (1 — 0By,
du " (ep+ (1 —p)HN—uaf — (1 -uw}p
_ayge 1-®
By 1 P00
o’ InGu(p.N) (—0* Y,
ouz  [(ap+(1—p)HN—uxf — (1 —uwp
_ (@ 4¢)° b
by (1~ 20w
<0, (44)
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and that
0 { 1 - By, }
du [(p + (1 — p)N — uof — (1 — w)h

— _ (1 — a)zﬁzl//a

[@p + (1 — p)N — uof — (1 — w)py?

<0,
0 [ayge o @ ] _ (apge) &
|y (1~ 0] = G4 0 - a0, (45)

for given (p,N). Thus, equation 0Gy4(p,N)/0u =0 must have a
unique solution, denoted by umax(p, N), that corresponds to the
maximum of Gu(p, N).

References

Blumstein, D.T., 2006a. The multipredator hypothesis and the evolutionary
persistence of antipredator behavior. Ethology 112, 209-217.

Blumstein, D.T., 2006b. Developing an evolutionary ecology of fear: how life
history and natural history traits affect disturbance tolerance in birds. Anim.
Behav. 71, 389-399.

Blumstein, D.T., Anthony, L.L., Harcourt, R, Ross, G., 2003. Testing a key assumption
of wildlife buffer zone: is flight initiation distance a species-specific trait? Biol.
Conserv. 110, 97-100.

Blumstein, D.T., Fernandez-]Juricic, E., Zollner, P.A., Garity, S.C., 2005. Interspecific
variation in avian response to human distance. J. Appl. Ecol. 42, 786-792.

Burger, J., Gochfeld, M., 1991. Human distance and birds: tolerance and response
distances of resident and migrant species in India. Environ. Conserv. 2,
156-158.

Cressman, R., 1992. In: The Stability Concept of Evolutionary Game Theory.
Springer, Heidelberg, New York.

Cresswell, H., Hilton, G.M., Ruxton, G.D., 2000. Evidence for a rule governing
the avoidance of superfluous escape flights. Proc. R. Soc. London B 267,
733-737.

Dehn, M.M.,, 1990. Vigilance for predators: detection and dilution effects. Behav.
Ecol. Sociobiol. 26, 337-342.

Gering, ].C., Blair, B., 1999. Predation on artificial bird nests along an urban
gradient: predatory risk or relaxation in urban environments. Ecography 22,
532-541.

Hamilton, W.D., 1971. Geometry for the selfish herd. ]J. Theor. Biol. 31,
295-311.

Hansen, T.F, Price, D.K,, 1995. Good genes and old age: do old mates provide
superior genes? J. Evol. Biol. 8, 759-778.

Hofbauer, J., Sigmund, K., 1998. In: The Theory of Evolution and Dynamical
Systems. Cambridge University Press, Cambridge.

Kokko, H., 1998. Good genes, old age and life-history trade-offs. Evol. Biol. 12,
739-750.

Kokko, H., Brooks, R., McNamara, J.M., Houston, A., 2002. The sexual selection
continuum. Proc. R. Soc. London B 269, 1331-1340.

Lytel, D.A., 2001. Disturbance regimes and life-history evolution. Am. Nat. 157,
525-536.

Maynard Smith, ]., 1982. In: Evolution and the Theory of Games. Cambridge
University Press, Cambridge.

Sirot, E., 2007. Game theory and the evolution of fearfulness in wild birds. J. Evol.
Biol. 20, 1809-1814.

Ydenberg, R.C., Dill, L.M., 1986. The economics of fleering from predators. Adv.
Study Behav. 16, 229-249.



	Evolutionary dynamics of fearfulness and boldness
	Introduction
	Basic model
	Stability analysis
	Boundary equilibria
	Interior equilibrium

	Evolutionarily stable strategy
	Summary
	Acknowledgments
	Derivation of Eq. (5)
	Stability analysis of interior equilibrium (p^*,N^*)
	Existence and uniqueness of the solution to equation  Gu(p,N)=0

	References


