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Abstract A one-step (birth–death) process is used to investigate stochastic noise in
an elementary two-phenotype evolutionary game model based on a payoff matrix.
In this model, we assume that the population size is finite but not fixed and that
all individuals have, in addition to the frequency-dependent fitness given by the
evolutionary game, the same background fitness that decreases linearly in the to-
tal population size. Although this assumption guarantees population extinction is
a globally attracting absorbing barrier of the Markov process, sample trajectories
do not illustrate this result even for relatively small carrying capacities. Instead,
the observed persistent transient behavior can be analyzed using the steady-state
statistics (i.e., mean and variance) of a stochastic model for intrinsic noise that as-
sumes the population does not go extinct. It is shown that there is good agreement
between the theory of these statistics and the simulation results. Furthermore, the
ESS of the evolutionary game can be used to predict the mean steady state.

Keywords Intrinsic noise · ESS · Evolutionary games · Stochastic effects

1. Introduction

It is well known that one of the basic assumptions of standard evolutionary
game theory developed by Maynard Smith (1982) (see also Taylor and Jonker,
1978; Lessard, 1984; Cressman, 1992; Hofbauer and Sigmund, 1998; Hofbauer and
Sigmund, 2003) is that the population size is effectively infinite. In particular, the
population size is sufficiently large so that stochastic effects can be ignored (Peck
and Feldman, 1988) in the deterministic evolutionary dynamics based on expected
payoffs through random pairwise interactions between individuals. However, for
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real populations, this assumption is not always valid, in which case stochastic ef-
fects due to finite populations (or other factors) may be important in the evolu-
tionary outcome of the dynamics (Hastings, 2004).

Consider the standard deterministic single-species game-theoretic model (see
Section 2), where each individual is characterized by its phenotype (or strategy)
and its fitness is a function of the population’s phenotypic distribution through the
game’s payoff matrix. As pointed out by Foster and Young (1990), this model does
not account for stochastic terms that may arise from a variety of factors. First, there
is variability due to differences between an individual’s realized and expected pay-
offs resulting from random interactions with other individuals. Second, there is
natural variability in the payoff matrix that results from environmental influences.
Third, there is background mutation, and possibly immigration of individuals from
other gene pools.

Each of these stochastic factors has been examined under the assumption that
the population size is finite and fixed. For instance, a great deal of research analyz-
ing the effect of rare but recurring mutations began with Foster and Young (1990),
who showed that stable strategies in their stochastic model differ from both the
traditional evolutionarily stable strategy (ESS) and the concept of an attractor in
a deterministic dynamical system (see also Kandori et al., 1993). More recently,
Broom (2005) analyzed the effect of variability in the payoff matrix on the ESS.
The model of Taylor et al. (2004) is more directly relevant for our approach, since
its assumptions of fixed payoff matrix and no mutation effects are the same as ours.
Specifically, they analyzed stochastic evolutionary game dynamics with finite pop-
ulation size using a frequency-dependent Moran process 1962. This is a Markov
process that assumes (1) the population size is a fixed constant; (2) at each time
step, an individual is chosen for reproduction proportional to its fitness; (3) one
identical offspring is produced, replacing another randomly chosen individual (see
also Fogel et al., 1997, 1998; Ficici and Pollack, 2000).

In this paper, we also investigate stochastic fluctuations in evolutionary game
dynamics. However, although our population is finite, its size varies according to
a one-step birth–death process (Van Kampen, 1992) where, at each step, an indi-
vidual either dies or reproduces an identical offspring. Thus, our Markov process
is closer to models of intrinsic noise as used in the physical sciences to predict the
appearance and disappearance of different types of particles under random inter-
actions (Van Kampen, 1992). In our intrinsic noise model, particles are individuals
exhibiting different strategies in the population and their numbers change accord-
ing to their fitness (see Section 3). Recently, this approach to modelling stochastic
fluctuations has gained interest in the biological literature (Swift, 2002; Tao, 2004;
Tao et al., 2005) in other contexts as well.

In our model, species extinction is a globally attracting absorbing barrier of the
Markov process but this is seldom observed in sample trajectories when the de-
terministic model has even a moderate equilibrium population size of 20 or more
individuals. As argued by Hastings (2004), such circumstances are common when
stochastic influences are included and it is then the transient dynamics that become
“an essential explanatory aspect of understanding ecological systems.” For this
reason, we concentrate on analyzing the dynamics of the steady-state statistics (i.e.,
the mean and variance) of the conditional distribution assuming the population
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does not go extinct. This is in contrast to the approach of Taylor et al. (2004), who
focus instead on the conditions for selection to favor successful invasion and/or
fixation of new phenotypes by calculating the corresponding barrier’s absorption
probability.

The basic evolutionary game model is from Maynard Smith (1982), but we as-
sume that the individual’s background fitness depends on the population size. Our
main goal is to show how the population size affects the statistical properties of
evolutionary game dynamics. The paper is organized as follows. In Section 2, the
basic deterministic model for evolutionary game dynamics is briefly described and
related to the static concept of an evolutionarily stable strategy. Section 3 develops
our intrinsic noise model for the elementary two-phenotype matrix game model of
Section 2. We then analyze this stochastic model when the equilibrium of the un-
derlying deterministic system is monomorphic (Section 4) and when it is polymor-
phic (Section 5). The final section summarizes the results in relation to the ESS
concept and the Appendices contain most of the longer calculations.

2. The deterministic model and evolutionarily stable strategies

In order to clearly illustrate the effect of intrinsic noise on the evolutionary dy-
namics, we will apply it to the case of a single species where each individual uses
one of two possible (pure) strategies, R1 and R2. Suppose pi is the proportion of
the population using strategy Ri .

In the deterministic model, individuals interact in random pairwise contests and
so those using strategy Ri receive an expected payoff of

fi =
2∑

j=1

ai j pj for i = 1, 2 (1)

where ai j is the payoff to strategy (or phenotype) Ri when interacting with Rj . It is
convenient to rewrite Eq. (1) in matrix notation (Cressman, 1992) as fi = ei · Ap
where

A=
[

a11 a12

a21 a22

]

is the 2 × 2 payoff matrix, p ∈ �2 ≡ {(p1, p2) : p1 + p2 = 1, pi ≥ 0} is the fre-
quency vector of strategy types in the population, ei is the ith unit coordinate vec-
tor (e.g., e1 = (1, 0)) corresponding to Ri , and u · Av ≡ ∑2

i, j=1 ui ai jv j is the stan-
dard inner product.

We assume ai j ≥ 0 for all 1 ≤ i, j ≤ 2. To include population size effects, we also
assume the fitness of an individual using pure strategy Ri is given by

Wi = fi + W0
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where W0 is called the background fitness (Maynard Smith, 1982). That is, W0 is the
component of an individual’s fitness that is not due to contests in the population.
We assume that all individuals have the same background fitness which is given by

W0(N) = 1 − βN

where N is the total population size, and the positive parameter 1/β can be thought
of as the environmental carrying capacity. In particular, background fitness de-
pends only on the population size and is independent of the strategy type.

With fitness interpreted as the reproductive success of an individual (who pro-
duces offspring with the same strategy), the continuous-time deterministic dynam-
ics becomes

dn1

dt
= W1n1 = n1(e1 Ap + 1 − βN)

dn2

dt
= W2n2 = n2(e2 Ap + 1 − βN) (2)

where ni = pi N is the number of individuals with phenotype Ri . In particular,
N = n1 + n2, since p2 = 1 − p1. Following Lessard (1984), (2) can be rewritten in
terms of N and p1 as

dp1

dt
= p1(1 − p1)(W1 − W2) = p1(1 − p1)(e1 Ap − e2 Ap) (3)

dN
dt

= NW (4)

where W = p1W1 + (1 − p1)W2 is the mean fitness of the population. Equation (3)
is the replicator equation (Taylor and Jonker, 1978; Hofbauer and Sigmund, 1998)
of evolutionary game theory when there are two strategies.

The equilibria (p∗, N∗) and their stability for the dynamics (3) and (4) can be
understood in terms of the ESS structure of the game with payoff matrix Aas out-
lined in the following paragraph. First, notice that common background fitness im-
plies the one-dimensional dynamics (3) is independent of N and so its evolutionary
outcome p∗ can be determined and then substituted into (4) to find N∗ (Cressman,
1992). Furthermore, the equilibrium N∗ = 0 is unstable due to our assumption that
all payoffs are nonnegative.

According to Maynard Smith (1982) definition, S ∈ �2 is an ESS if and only if
for all Ŝ ∈ �2 different from S,

either (Ŝ − S)AS < 0 (5)

or (Ŝ − S)AS = 0 and(Ŝ − S)ÂS > 0. (6)

To simplify comparisons to the ESS in our analysis of intrinsic noise starting in the
following section, it is better to add 1 to all entries of the payoff matrix and define
bi j ≡ ai j + 1, 1 ≤ i, j ≤ 2. This does not alter the ESS structure.
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The monomorphic equilibrium with no individuals using strategy R2 (i.e., the
boundary point (p∗ = (1, 0), N∗ = b11/β)) is locally asymptotically stable for (3)
and (4) if and only if b11 > b21 if and only if p∗ = (1, 0) is an ESS.1 Heuristically,
stability follows, since the ESS strategy then has the higher payoff when it is com-
mon in the population. Likewise, (p∗ = (0, 1), N∗ = b22/β)) is locally asymptoti-
cally stable if and only if b22 > b12 if and only if this p∗ is an ESS. If both these
monomorphic equilibria are ESSs, then there is an unstable polymorphic equilib-
rium (i.e., p∗ is in the interior of �2) that is not an ESS given by

p∗
1 = b12 − b22

b12 − b22 + b21 − b11
(7)

N∗ = 1
β

b12b21 − b11b22

b12 − b22 + b21 − b11
. (8)

This equilibrium separates the domain of attraction of the boundary ESSs. If
exactly one monomorphic equilibrium is an ESS, it is globally asymptotically stable
(and so there is no interior equilibrium).

Finally, if neither monomorphic equilibrium is an ESS (i.e., b11 < b21 and b22 <

b12), then neither pure strategy has the higher payoff when it is common, suggest-
ing the population evolves toward a polymorphism (i.e., a mixed strategy). In fact,
the interior equilibrium (7) is an ESS and globally asymptotically stable in this
case.

3. Intrinsic noise

Intrinsic noise is one of the most important stochastic processes in physics and
chemistry. It is used there to describe the internal noise that is due to the system
consisting of discrete particles (Van Kampen, 1992) by modelling stochastic effects
as a one-step (birth–death) process. In the context of evolutionary games, we in-
terpret each individual as a particle in the system. Thus, with this interpretation,
the theory of one-step (birth–death) processes can be used to investigate stochas-
tic noise due to random interactions between individuals. We begin with a short
description about this process, as it applies to intrinsic noise in evolutionary games
with finite population size.

Let �(n1, n2; t) denote the joint probability distribution that the numbers of R1

and R2 equal n1 and n2 at time t . As a one-step process, �(n1, n2; t) may jump to an
adjacent state n1 ± 1 or n2 ± 1 in the time interval �t with probability proportional
to individual fitness. �(0, 0; t) is then an increasing function of t since (n1, n2) =
(0, 0) is an absorbing barrier. Moreover, every trajectory of this stochastic process
will eventually be absorbed at (n1, n2) = (0, 0) (i.e., (n1, n2) = (0, 0) is a globally
absorbing steady state) (see the following section).

Here, it is assumed that �t is sufficiently small that at most one birth–death
event occurs during this time interval. Following Swift (2002), we take the

1Here we ignore the degenerate possibility that b11 = b21 (in which case we would also need to
compare b12 to b22). We also assume b12 �= b22.
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probability that ni increases to ni + 1 and that ni decreases to ni − 1 as �t times the
positive and negative terms on the right-hand side of (2) respectively. That is, ni

increases by 1 with probability bi ni�(n1, n2; t)�t where bi ≡ ei Ap + 1 = p1bi1 +
p2bi2 and decreases by 1 with probability niβN�(n1, n2; t)�t . Thus, the population
leaves state (n1, n2) with probability (b1n1 + b2n2 + n1βN + n2βN)�(n1, n2; t)�t
in the time interval from t to t + �t . However, the population can also enter state
(n1, n2) if it is in state (n1 + 1, n2) at time t and one R1-strategist is lost (this occurs
with probability (n1 + 1)β(N + 1)�(n1 + 1, n2; t)�t) or it is in state (n1 − 1, n2) at
time t and one R1-strategist is gained etc. That is,

�(n1, n2; t + �t) − �(n1, n2; t)
�t

= (n1 + 1)β(N + 1)�(n1 + 1, n2; t) − n1βN�(n1, n2; t)

+ (n2 + 1)β(N + 1)�(n1, n2 + 1; t) − n2βN�(n1, n2; t)

+ b1(n1 − 1)�(n1 − 1, n2; t) − b1n1�(n1, n2; t)

+ b2(n2 − 1)�(n1, n2 − 1; t) − b2n2�(n1, n2; t)

=
2∑

i=1

(
(E+1

i − 1)βNni� + (E−1
i − 1)bi ni�

)
(9)

where E±1
i is the operator given by

E±1
i g(n1, n2) =

{
g(n1 ± 1, n2) if i = 1
g(n1, n2 ± 1) if i = 2

that shifts the population of Ri -strategists by ± one individual.
By taking the limit in (9) as �t approaches zero, we obtain

∂�(n1, n2; t)
∂t

=
2∑

i=1

((
E+1

i − 1
)
βNni� + (

E−1
i − 1

)
bi ni�

)
. (10)

This is the continuous-time master equation (Van Kampen, 1992) of �(n1, n2; t)
corresponding to (2). Clearly, (n1, n2) = (0, 0) remains an absorbing barrier of
this continuous-time Markov process. Since we are more interested in the tran-
sient behavior of sample trajectories for the Markov process, it is the evolution
of the conditional probability distribution of �(n1, n2; t) that assumes the popu-
lation does not go extinct (i.e., either n1 �= 0 or n2 �= 0 or both) that is more im-
portant for us. For instance, when the population is monomorphic as in Section 4,
this may evolve to the unique conditional equilibrium called the quasi-stationary
distribution (Seneta, 1996; Pielou, 1977; Nasell, 2001). To investigate such ques-
tions in general, we approximate the evolution of the mean and variance of any
initial conditional distribution by expanding the operators E±1

i about equilibrium
points (p∗, N∗) of the deterministic dynamics when p∗ is either on the boundary
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(Section 4) or the interior (Section 5) of �2. In particular, we examine whether
these evolve to a stable equilibrium.

4. Intrinsic noise for boundary equilibria

The theory of intrinsic noise is most straightforward when all individuals in the
population are using the same strategy, say R1. For the deterministic model,
the dynamics (2) is now one-dimensional (since n2(t) = 0 for all t) given by the
logistic equation ṅ1 = n1(a11 + 1 − βn1) = n1(b11 − βn1) with globally asymptot-
ically stable equilibrium n∗

1 = b11/β corresponding to the boundary equilibrium
(p∗ = (1, 0), N∗ = b11/β). We develop the corresponding model with intrinsic
noise in the following section before returning to examine intrinsic noise near
(p∗ = (1, 0), N∗ = b11/β) in the full dynamical system (2) in Section 4.2.

4.1. Internal steady-state statistics

In this section, we assume that n2 = 0 initially (and so, from (9), n2 = 0 for all time)
and denote the probability distribution �(n1, 0; t) that the number of R1 individ-
uals equals n1 at time t by �(n1; t) for convenience. Suppose one individual gives
birth (to an offspring also using R1) or dies per unit time with relative probabilities
n1b11 and βn2

1 respectively. The discrete-time Markov process is then given by (if
n1 ≥ 1)

�(n1; t + 1) = pn1−1,n1�(n1 − 1; t) + pn1+1,n1�(n1 + 1; t)

where the one-step transition probabilities from state n1 to states n1 − 1 and n1 + 1
are

pn1,n1−1 = βn2
1

n1b11 + βn2
1

and

pn1,n1+1 = n1b11

n1b11 + βn2
1

respectively.
Clearly, n1 = 0 is an absorbing barrier of this discrete-time Markov process.

From Nasell (2001) (see also Seneta, 1996), every trajectory of the continuous-
time Markov process corresponding to the logistic equation will eventually be ab-
sorbed at n1 = 0 (i.e., n1 = 0 is a globally absorbing steady state). For complete-
ness, the proof of this statement for our discrete-time process is given in Appendix
A. For instance, in Fig. 1a, where β = 1 and a11 = 3, the equilibrium size for the
monomorphic population using strategy R1 is n∗

1 = 4. We see that within 200 time
steps, the population has gone extinct for the sample path depicted.
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Fig. 1 Sample trajectories starting at the equilibrium population size n∗
1 for the discrete-time

one-step process corresponding to (11) with payoff parameter a11 = 3. (a) β = 1 and n∗
1 = 4. (b)

β = 0.1 and n∗
1 = 40. (c) β = 0.01 and n∗

1 = 400. For this process, the transition probabilities from
state n to states n − 1 and n + 1 are pn,n−1 = (βn2)/(4n + βn2) and pn,n+1 = (4n)/(4n + βn2), re-
spectively.

However, from Fig. 1b and c, with β = .1 and β = .01, respectively (i.e., n∗
1 = 40

and n∗
1 = 400 respectively), there is no indication the population will go extinct for

these sample paths even after 40,000 time steps. In fact, from simulations, observed
sample paths rarely go extinct for moderate equilibrium sizes of n∗

1
∼= 20. This is

not surprising, since Nasell (2001) shows that the expected time to extinction in the
continuous-time process grows exponentially as a function of n∗

1 (he also shows that
the quasi-stationary distribution near n∗

1 will be close to normal when extinction
time is large).

Let us assume that the equilibrium population size is large enough (e.g., n∗
1 ≥ 20)

so that expected time to absorption at n1 = 0 along observed sample paths is quite
long. We investigate the transient behavior of the sample paths by making the
following two continuous-time approximations to the discrete process.

First, the master equation (10) of �(n1, 0; t) corresponding to (9) (cf. (2)) is now

∂�(n1; t)
∂t

= (
E+1

1 − 1
)
βn2

1� + (
E−1

1 − 1
)
b11n1� (11)

where the step operator is E±1
1 g(n1) = g(n1 ± 1). From the Taylor expansion

g(n1 ± 1) = g(n1) ± g′(n1) + (1/2)g′′(n1) ± (1/3!)g′′′(n1) + · · · of g about n1,the
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step operator E±1
1 is given by

E±1
1 = 1 ± ∂

∂n1
+ 1

2
∂2

∂n2
1

± 1
3!

∂3

∂n3
1

+ · · · .

Hence, omitting all derivatives beyond second order, the Fokker–Planck approxi-
mation (Van Kampen, 1992) of the master equation is

∂�(n1; t)
∂t

= − ∂

∂n1
(b11 − βn1)n1� + 1

2
∂2

∂n2
1

(b11 + βn1)n1�. (12)

The steady-state statistics (Van Kampen, 1992) at the boundary equilibrium n∗
1 =

b11/β refer to the mean and variance of the following approximation of (12). When
n1 is near this equilibrium n∗

1, let x1 ≡ n1 − n∗
1. By taking the Taylor expansions of

(b11 − βn1)n1 and (b11 + βn1)n1 from (12) in terms of x1 and retaining only the
lowest nonzero terms, we obtain

∂�(x1; t)
∂t

= b11
∂

∂x
x1� + b2

11

β

∂2

∂x2
1

�. (13)

The mean and variance of a solution �(x1; t) for (13) are calculated through its
first and second moments 〈x1〉 ≡ ∫ ∞

−∞ x1�(x1; t)dx1 and 〈x2
1 〉 ≡ ∫ ∞

−∞ x2
1�(x1; t)dx1,

respectively.
To determine how these moments evolve with time, boundary conditions must

be added to (13) as x1 (or n1) becomes infinite. In fact, since there is no a
priori reason n1 ≥ 0 (i.e., x1 ≥ −n∗

1) in this approximation, we need to impose
boundary conditions as x1 → ±∞. Clearly, from Fig. 1, sample trajectories of our
discrete-time process remain bounded. In particular, �(x1; t) is identically zero
when |x1| is sufficiently large. Since non trivial solutions of (13) cannot be iden-
tically zero for large |x1|, we translate the biological fact of bounded population
size into the mathematical condition that �(x1; t) approaches zero asymptotically
as |x1| → ∞ in the following sense. Specifically, we assume limx1→±∞ �(x1; t) = 0,
limx1→±∞ x1�(x1; t) = 0, limx1→±∞(∂�(x1; t))/(∂x1) = 0, etc. (i.e., �(x1; t) and its
derivatives as functions of x1 approach zero faster than any polynomial).

By substituting (13) and applying integration by parts, these boundary condi-
tions imply

d〈x1〉
dt

=
∫ ∞

−∞
x1

∂�(x1; t)
∂t

dx1 =
∫ ∞

−∞
x1

(
b11

∂

∂x1
x1� + b2

11

β

∂2

∂x2
1

�

)
dx1

= b11x2
1�

∣∣∞−∞ − b11

∫ ∞

−∞
x1�dx1 + b2

11

β

[
x1

∂�

∂x1

∣∣∞−∞ −
∫ ∞

−∞

∂�

∂x1
dx1

]

= −b11〈x1〉
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d〈x2
1 〉

dt
=

∫ ∞

−∞
x2

1
∂�(x1; t)

∂t
dx1 =

∫ ∞

−∞
x2

1

(
b11

∂

∂x1
x1� + b2

11

β

∂2

∂x2
1

�

)
dx1

= b11

[
x3

1�
∣∣∞−∞ −

∫ ∞

−∞
2x2

1�dx1

]
+ b2

11

β

[
x2

1
∂�

∂x1

∣∣∞−∞ −
∫ ∞

−∞
2x1

∂�

∂x1
dx1

]

= −2b11〈x2
1 〉 − 2b2

11

β

[
−

∫ ∞

−∞
�dx1

]

= −2b11〈x2
1 〉 + 2b2

11

β
.

That is, 〈x1〉 and 〈x2
1 〉 evolve to 0 and b11/β, respectively, under (13). In fact, Van

Kampen (1992) shows that �(x1; t) is a standard normal distribution with mean 0
and variance b11/β for large t (cf. the quasi-stationary distribution of Nasell (2001)
that is close to normal near n∗

1 when this equilibrium size is large). Thus, for large t ,
the expectation and variance of n1 near the equilibrium n∗

1 are 〈n1〉 = σ 2
n1

= b11/β.
These are called the steady-state statistics of the dynamics (12) for the equilibrium
n∗

1.
Since these theoretical steady-state statistics are based on two successive ap-

proximations, (12) and (13), of the one-step process (9), an immediate question
is how accurate they are for the original equation. A naive test is to consider the
mean and variance of the sample trajectories with 40,000 data points in Fig. 1b and
c (i.e., when the population does not go extinct). For β = 0.1 (Fig. 1b), the mean
and variance are 39.675 and 39.695, respectively, and for β = 0.01 (Fig. 1c) they
are 395.458 and 396.012.2 These are consistent with the theoretical values of 40
(Fig. 1b) and 400 (Fig. 1c), especially given that the linearized terms in x become
less accurate as variance increases.

To test this accuracy further, we performed Monte Carlo simulations following
Gillespie (1977) for (11) using the payoff matrix

[
3 1

1 3

]

that has b11 = 4. As we can see from Fig. 2, there is surprisingly good agreement for
the means and variances (for the range of values β = 0.01 to 0.09). Although not
apparent from Fig. 2, it is clear from Fig. 1 that the relative fluctuation strength
σn1/〈x1〉 (defined by the coefficient of variation which is given by the standard
deviation divided by the mean) decreases as n∗

1 = b11/β increases. These results
are also related to the concept of Fano factor (see, for example, Thattai and van
Oudenaarden, 2001; Tao, 2004; Tao et al., 2005) which is always 1 for our model.

2Even for β = 1 (Fig. 1a), the mean and variance are 4.456 and 3.049 for the first 180 time steps
(i.e., before the population goes extinct) and these are reasonably consistent with the theoretical
values of 4.
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Fig. 2 The means and variances of sample trajectories of (11) compared with the theoretical
steady-state statistics (i.e., the mean and variance) of (13). Payoff parameter is a11 = 3.

4.2. External steady-state statistics: Is it possible that a mutant strategy can invade
the population through intrinsic noise?

The question we examine in this section is whether the distribution of individuals
using pure strategy R1 found in Section 4.1 through internal intrinsic noise can be
successfully invaded by a mutant strategist using pure strategy R2. For the deter-
ministic system (2) (or equivalently (3) (4)), (p∗ = (1, 0), N∗ = b11/β) is asymptot-
ically stable if and only if b11 > b21 if and only if p∗ = (1, 0) is an ESS.

For this equilibrium, n∗
1 = b11/β and n∗

2 = 0. Let x1 = n1 − n∗
1 and x2 = n2. By

using the same methods as in Section 4.1 (for details see Section 5), we obtain

d
dt

(
〈x1〉
〈x2〉

)
=

(
−b11 b12

0 b21 − b11

) (
〈x1〉
〈x2〉

)
(14)

as the linear approximation to the master Eq. (10) for the evolution of the expected
values of x1 and x2. We see that 〈x1〉 and 〈x2〉 evolve to 0 if and only if b11 > b21.
That is, n∗

1 = b11/β and n∗
2 = 0 is asymptotically stable if and only if p∗ = (1, 0) is

an ESS. This agrees with the simulation results of Fig. 3 for the one-step process
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Fig. 3 Stochastic simulations are plotted where most of the individuals in the population are ini-

tially R1-strategists. The parameter is taken as β = 0.01 and the payoff matrices are [ 3 1
1 3 ] and

[ 1 3
3 1 ] in (a) and (b), respectively. The three curves in each figure correspond to three different

initial conditions, which are n2(0) = 30, 40, and 50 out of a total population size of 400. The sim-
ulations in (a) show that, if most of the individuals are R1-strategists, the pure strategy R2 will
eventually go extinct. In (b), the population initially evolves toward the ESS proportion of 50%
R1-strategists and then oscillates around this stable equilibrium.

(9). That is, in Fig. 3a where the payoff matrix is

[
3 1

1 3

]

with ESS p∗ = (1, 0), the simulations show R2 cannot invade R1 when the initial
proportion of R2 individuals is small (up to 10% in these simulations). On the other
hand, when the payoff matrix is

[
1 3

3 1

]
,

there is no ESS at p∗ = (1, 0) and Fig. 3b confirms R2 does successfully invade
R1, since the proportion of R2 individuals is increasing initially (as the popula-
tion evolves towards the ESS p∗ = ({1/2}, {1/2})). This latter situation is examined
more closely in the following section.
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In summary, stability of boundary equilibria based on the transient behavior
due to internal and external intrinsic noise is the same as the deterministic sys-
tem. In particular, these stochastic effects do not enhance the ability of the mutant
strategy to invade. This contrasts with the limiting behavior of stochastic mod-
els with recurring mutations and fixed population size analyzed by Foster and
Young (1990) (see also Kandori et al., 1993) where some ESSs were shown to be
unstable.

5. Intrinsic noise for interior equilibria

We begin this section by giving the technical details of the linear expansion for
the means and variances under the master equation. By omitting all derivatives
beyond the second in the Taylor expansion E±1

i = 1 ± (∂/∂ni ) + (1/2)(∂2/∂n2
i ) ±

(1/3)(∂3/∂n3
i ) + · · · of the step operators E±1

i , the Fokker–Planck approximation
of the master Eq. (10) is now (cf. (12))

∂�(n1, n2; t)
∂t

=
2∑

i=1

(
− ∂

∂ni
(bi − βN)ni� + 1

2
∂2

∂n2
i

(bi + βN)ni�

)
. (15)

When the systems (3) and (4) are near the interior (i.e., polymorphic) equilibrium
(p∗, N∗) given by (7) and (8), we are interested in the steady-state statistics of (15).
For this purpose, set xi = ni − n∗

i (i = 1, 2), substitute this in (15) and expand the
coefficients in powers of xi . By retaining only the lowest nonzero terms, we obtain

∂�(x1, x2; t)
∂t

=
2∑

i=1

(
− ∂

∂xi
(ci1x1 + ci2x2)� + Di

∂2�

∂x2
i

)
(16)

where Di ≡ βN∗n∗
i and ci j = (∂/∂nj )(bi − βN)ni and these partial derivatives are

evaluated at the equilibrium.3 That is,

c11 =
(

(b11 − b12)
p∗

2

N∗ − β

)
n∗

1, c12 = −
(

(b11 − b12)
p∗

1

N∗ + β

)
n∗

1

c21 =
(

(b21 − b22)
p∗

2

N∗ − β

)
n∗

2 c22 = −
(

(b21 − b22)
p∗

1

N∗ + β

)
n∗

2.

Generalization of the zero boundary conditions given in Section 4.1 now leads to
d〈xi 〉/dt = ci1〈x1〉 + ci2〈x2〉 for i = 1, 2 as the evolution of the first moments (see

3At the boundary equilibrium of Section 4.2, it is easy to verify that c11 = −b11, c12 = b12, c21 = 0,
and c22 = b21 − b11. This leads to (14) by following the same calculations that produce (17) at an
interior equilibrium.
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Appendix B). In matrix form, this is

d
dt

( 〈x1〉
〈x2〉

)
=

(
c11 c12

c21 c22

) (
〈x1〉
〈x2〉

)
. (17)

A straightforward application (Appendix B) of the two-dimensional Routh–
Hurwitz stability conditions (Pielou, 1977) shows that (〈x1〉, 〈x2〉) = (0, 0) is glob-
ally asymptotically stable for (17) if and only if p∗ is an ESS. In this case, the ex-
pectations of n1 and n2 evolve to 〈n1〉 = p∗

1 N∗ and 〈n2〉 = p∗
2 N∗, respectively (i.e.,

(p∗, N∗) is globally asymptotically stable for (16)). On the other hand, if p∗ is not
an ESS, then (p∗, N∗) is unstable and we expect the population to evolve to one of
the boundary equilibria of Section 4. For this reason, we assume p∗ is an ESS for
the remainder of this section.

In order that (16) is a good approximation of the master Eq. (10), it is important
that the distribution �(n1, n2; t) is not too spread out from the equilibrium n∗

i =
p∗

i N∗. That is, we need to analyze the dynamics for the variance and covariance of
solutions of (16). As shown in Appendix B, this is given in matrix form by

d
dt

⎛

⎜⎝

〈
x2

1

〉

〈x1x2〉〈
x2

2

〉

⎞

⎟⎠ =

⎛

⎜⎝
2c11 2c12 0

c21 c11 + c22 c12

0 2c21 2c22

⎞

⎟⎠

⎛

⎜⎝

〈
x2

1

〉

〈x1x2〉〈
x2

2

〉

⎞

⎟⎠ +

⎛

⎜⎝
2D1

0

2D2

⎞

⎟⎠ . (18)

It is also shown there that a (globally) asymptotically stable equilibrium for (18)
exists with values

⎛

⎜⎝
〈x2

1 〉
〈x1x2〉
〈x2

2 〉

⎞

⎟⎠ = 1
(c11 + c22)(c11c22 − c12c21)

⎛

⎜⎝
−(c11 + c22)c22 D1 − c12(c12 D2 − c21 D1)

c11c12 D2 + c21c22 D1

−(c11 + c22)c11 D2 − c21(c21 D1 − c12 D2)

⎞

⎟⎠

if and only if p∗ is an ESS.
Since 〈xi 〉 = 0 at equilibrium, these equilibrium values are the (co)variances of

the joint distribution �(n1, n2; t) for large t as well. That is,

σ 2
n1

= − D1(c11c22 − c12c21) + D1c2
22 + D2c2

12

(c11 + c22)(c11c22 − c12c21)

= −β(N∗)2
(

p∗
1(c11c22 − c12c21) + p∗

1c2
22 + p∗

2c2
12

)

(c11 + c22)(c11c22 − c12c21)

σ 2
n2

= − D2(c11c22 − c12c21) + D2c2
11 + D1c2

21

(c11 + c22)(c11c22 − c12c21)

= −β(N∗)2
(

p∗
2(c11c22 − c12c21) + p∗

2c2
11 + p∗

1c2
21

)

(c11 + c22)(c11c22 − c12c21)
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cov(n1, n2) = D1c21c22 + D2c11c12

(c11 + c22)(c11c22 − c12c21)

= β(N∗)2(p∗
1c21c22 + p∗

2c11c12)
(c11 + c22)(c11c22 − c12c21)

.

Since ci j , βN∗, p∗
1 , and p∗

2 are all independent of β, we see that 〈n1〉 and 〈n2〉 as well
as σ 2

n1
, σ 2

n2
, cov(n1, n2) all grow linearly with respect to N∗ (i.e., with respect to 1/β)

just as was the case for the steady-state statistics of the stable boundary equilibria
considered in the previous section.

These results show that the fluctuations in the number of R1-strategists will be
less noticeable as the equilibrium population size N∗ gets large (cf. Fig. 1b com-
pared to Fig. 1c in Section 4). The transient dynamics for the discrete-time Markov
process is then approximated well by the evolution of the means. Just as for the
boundary equilibria of Section 4, it is then the ESS concept that predicts the even-
tual evolutionary outcome.

On the other hand, for deterministic evolutionary game dynamics, we are of-
ten more interested in the phenotypic frequency of strategy use than in the ac-
tual number using these strategies near any interior stable equilibrium. Thus, the
steady-state statistics of this frequency are also of interest under stochastic fluctu-
ations. To calculate these, notice that p1 can be approximated as

p1 − p∗
1 = ∂

∂n1

(
n1

n1 + n2

) ∣∣(n∗
1,n

∗
2) (n1 − n∗

1) + ∂

∂n2

(
n1

n1 + n2

) ∣∣(n∗
1,n

∗
2) (n2 − n∗

2)

= p∗
2

N∗ (n1 − n∗
1) − p∗

1

N∗ (n2 − n∗
2)

if the system’s state is near the stable fixed point (p∗, N∗). This approximation
implies that the steady-state statistics of the frequency p1 are

〈p1〉 = p∗
1 + p∗

2

N∗ (〈n1〉 − n∗
1) − p∗

1

N∗ (〈n2〉 − n∗
2) = p∗

1

σ 2
p1

= 1
(N∗)2

((p∗
2)2σ 2

n1
+ (p∗

1)2σ 2
n2

− 2p∗
1 p∗

2 cov(n1, n2))

= − β

(c11 + c22)(c11c22 − c12c21)

×
(

(p∗
1 p∗

2)(c11c22 − c12c21) + (p∗
2)2

(
p∗

1c2
22 + p∗

2c2
12

)

+(p∗
1)2

(
p∗

2c2
11 + p∗

1c2
21

) + 2p∗
1 p∗

2(p∗
1c21c22 + p∗

2c11c12)

)

= β

b12 − b22 + b21 − b11

= β

a12 − a22 + a21 − a11
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Fig. 4 A comparison between Monte Carlo simulations and theoretical predictions is plotted for

different values of β taken from 0.01 to 0.09 when the payoff matrix is taken as [ 1 3
3 1 ]. For the

variance and standard deviation of phenotypic frequency p, the empty circles (connected by the
sold line segments) indicate the results of the Monte Carlo simulation, and the squares (connected
by the broken curve) denote the theoretical predictions.

This result shows clearly that, for a given two-phenotype payoff matrix with an
interior ESS (i.e., a12 > a22 and a21 > a11), the variance of phenotypic frequency p1

is an increasing linear function of the parameter β (i.e., the variance will decrease
as the equilibrium population size N∗ increases). That is, stochastic fluctuations
are expected to become negligible for the frequency dynamics as population size
becomes large and so the deterministic model can be used instead.

For a simple example, a comparison between the Monte Carlo simulations of
(10) (the simulation algorithm is from Gillespie (1977)) and the theoretical predic-
tions of the steady-state predictions from (16) for different values of the parameter
β is plotted in Fig. 4, where the payoff matrix is given by

(ai j )2×2 =
[

1 3

3 1

]
.

This figure again shows that the theoretical analysis is quite accurate.
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6. Conclusion

In this paper, stochastic noise in a simple evolutionary game dynamics with two
phenotypes is analyzed using the theory of one-step birth–death processes. We
assume that the population size is finite but not fixed, and we mainly focus our
attention on the statistics based on random interactions between individuals. This
differs from other studies of stochastic effects due to finite populations in evo-
lutionary game theory where population size is assumed to be fixed and interac-
tions may be random (Taylor et al., 2004) or based on a structured population
such as when interactions only occur between neighbors on an evolutionary graph
(Ohtsuki et al., 2006). Moreover, this literature typically examines the long-term
steady-state solution of the Markov process which, in our case, is of little interest
since fitnesses that decrease in population size (i.e., logistic density effects) imply
the population eventually goes extinct (i.e., the only steady state is the trivial so-
lution n1 = n2 = 0). Instead, we examine the transient behavior (that assumes the
population is not extinct) which can be quite long lasting (see Fig. 1b and c) for
even moderate equilibrium population sizes of 40 individuals in the corresponding
deterministic model. Since these transient probability distributions are analytically
intractable for our one-step process, we approximate their steady-state statistics
(i.e., their means and variances) through linearizing the master equation of the
associated continuous-time process. We find good agreement between these latter
analytic statistics and simulation results of the original one-step process (see Figs. 2
and 4).

Our main results show that the deterministic model of evolutionary game the-
ory continues to predict the stochastic population means and that the stochastic
effects on the variances become less important as the equilibrium population size
increases. For two phenotypes with individual fitness given as a combination of
pairwise interactions (through a payoff matrix) and a background fitness that is in-
dependent of phenotype, the deterministic model is fully understood by examining
the ESSs of the payoff matrix. In particular, the frequencies of the two phenotypes
approach the ESS proportions as the population size evolves to the N∗ where logis-
tic density effects exactly cancel the payoffs gained through pairwise interactions
(Section 2). The same stable equilibrium occurs for the linearized master equation.
Furthermore, stable equilibrium variances for the number of individuals using the
two phenotypes can also be determined for this stochastic equation. In fact, these
variances increase linearly in the equilibrium population size N∗. Thus, for large
N∗, the frequency variance approaches zero. That is, stochastic effects become less
and less relevant for large populations and only the deterministic model of evolu-
tionary game theory need be considered to predict the evolution of phenotypic
frequencies.

In conclusion, the issue raised by Hastings (2004) (i.e., that using deterministic
approximations of stochastic models applied to complex ecological systems may
give misleading predictions of the evolutionary outcome) is not a problem for two-
phenotype evolutionary games when the (stable) equilibrium population size is
quite large. That is, stochastic fluctuations can be ignored in these circumstances
and standard game-theoretic deterministic dynamics can be legitimately used to
predict population mean strategy and population size. In fact, these predictions
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remain valid for a moderate equilibrium population size as well. In this latter case,
the stochastic fluctuations about the mean become increasingly prominent. As we
have seen, these can also be analyzed through deterministic evolutionary dynamics
that predict stable variances (and covariances).

Appendix A

Here we show that every trajectory in Section 4.1 is eventually absorbed in the
extinction state. A similar approach shows this is also true for the trajectories that
start in the interior of the state space as in Sections 4.2 and 5. By the Mean Ergodic
Theorem for discrete-time Markov processes (Bharucha-Reid, 1960),

πi j ≡ lim
n→∞

1
n

n∑

ν=0

p(ν)
i j

exists for all 0 ≤ i, j < ∞ and satisfies
∑∞

j=0 πi j ≤ 1 and πi j = ∑∞
k=0 πik pkj =

∑∞
k=0 pikπkj . Here, p(ν)

i j is the transition probability from state i to state j in ν steps

and pi j = p(1)
i j . For our one-step Markov chain, we have pi,i−1 = βi2/(4i + βi2)

and pi,i+1 = 4i/(4i + βi2) as the only nonzero transition probabilities. Thus,

pi,i−1πi−1,0 + pi,i+1πi+1,0 = πi0

for i ≥ 1 and the second-order recurrence relation becomes

πi+1,0 − πi0 = βi
4

(πi0 − πi−1,0).

From this, it is easy to show that πi+1,0 − πi0 = 0 for all i (otherwise we have the
contradiction πi0 < 0 for i sufficiently large). Furthermore, π00 = 1 and π0 j = 0 if
j > 0, since i = 0 is an absorbing barrier. Thus, πi0 = 1 for all i ≥ 0 and, further-
more, πi j = 0 if j > 0.

Since p(ν)
i0 is an increasing function of ν, πi0 = 1 implies limν→∞ p(ν)

i0 = 1. In par-
ticular, the population goes extinct along every trajectory of (9).

Appendix B

This appendix provides the mathematical details that justify the results given in
Section 5 for the evolution and stability of the first and second moments corre-
sponding to Eq. (16).

Using the zero boundary conditions

lim
x1,x2→±∞ �(x1, x2; t) = 0, lim

x1,x2→±∞ xi�(x1, x2; t) = 0, lim
x1,x2→±∞

∂�(x1, x2; t)
∂xi

= 0,
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. . . for i = 1, 2, we obtain

d〈x1〉
dt

=
∫ ∞

−∞

∫ ∞

−∞
x1

∂�

∂t
dx1dx2

=
∫ ∞

−∞

∫ ∞

−∞
x1

(
− ∂

∂x1
(c11x1 + c12x2)� + D1

∂2�

∂x2
1

)
dx1dx2

+
∫ ∞

−∞

∫ ∞

−∞
x1

(
− ∂

∂x2
(c21x1 + c22x2)� + D2

∂2�

∂x2
2

)
dx1dx2

=
∫ ∞

−∞

[
x1

(
−(c11x1 + c12x2)� + D1

∂�

∂x1

)] ∣∣x1=∞
x1=−∞ dx2

−
∫ ∞

−∞

∫ ∞

−∞

(
−(c11x1 + c12x2)� + D1

∂�

∂x1

)
dx1dx2

+
∫ ∞

−∞
x1

(
−(c21x1 + c22x2)� + D2

∂�

∂x2

) ∣∣x2=∞
x2=−∞ dx1

= c11〈x1〉 + c12〈x2〉 −
∫ ∞

−∞
D1�

∣∣x1=∞
x1=−∞ dx2

= c11〈x1〉 + c12〈x2〉.

This combines with a similar calculation for d〈x2〉/dt to yield (17). (〈x1〉, 〈x2〉) =
(0, 0) is globally asymptotically stable if and only if the trace of

(
c11 c12

c21 c22

)
(B.1)

is negative and its determinant is positive. From the main text,

c11 + c22 = (b11 − b12 + b22 − b21)p∗
1 p∗

2 − βN∗ = 2b12b21 − b22b21 − b12b11

b11 − b12 + b22 − b21
< 0

for any interior equilibrium (p∗, N∗). Furthermore, c11c22 − c12c21 =
−βp∗

1 p∗
2 N∗(b11 − b12 + b22 − b21) > 0 if and only if the fixed interior equilib-

rium of (3) and (4) is globally asymptotically stable (i.e., p∗ is an ESS).
For the second moments, we have

d
〈
x2

1

〉

dt
=

∫ ∞

−∞

∫ ∞

−∞
x2

1
∂�

∂t
dx1dx2

=
∫ ∞

−∞

∫ ∞

−∞
x2

1

(
− ∂

∂x1
(c11x1 + c12x2)� + D1

∂2�

∂x2
1

)
dx1dx2
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+
∫ ∞

−∞

∫ ∞

−∞
x2

1

(
− ∂

∂x2
(c21x1 + c22x2)� + D2

∂2�

∂x2
2

)
dx1d2

=
∫ ∞

−∞

[
x2

1

(
−(c11x1 + c12x2)� + D1

∂�

∂x1

)] ∣∣x1=∞
x1=−∞ dx2

−
∫ ∞

−∞

∫ ∞

−∞
2x1

(
−(c11x1 + c12x2)� + D1

∂�

∂x1

)
dx1dx2

+
∫ ∞

−∞
x2

1

(
−(c21x1 + c22x2)� + D2

∂�

∂x2

) ∣∣x2=∞
x2=−∞ dx1

= 2c11
〈
x2

1

〉 + 2c12〈x1x2〉 − 2D1

[
x1�

∣∣x1=∞
x1=−∞ −

∫ ∞

−∞

∫ ∞

−∞
�dx1dx2

]

= 2c11
〈
x2

1

〉 + 2c12〈x1x2〉 + 2D1

and

d〈x1x2〉
dt

=
∫ ∞

−∞

∫ ∞

−∞
x1x2

∂�

∂t
dx1dx2

=
∫ ∞

−∞

∫ ∞

−∞
x1x2

(
− ∂

∂x1
(c11x1 + c12x2)� + D1

∂2�

∂x2
1

)
dx1dx2

+
∫ ∞

−∞

∫ ∞

−∞
x1x2

(
− ∂

∂x2
(c21x1 + c22x2)� + D2

∂2�

∂x2
2

)
dx1dx2

=
∫ ∞

−∞

[
x1x2

(
−(c11x1 + c12x2)� + D1

∂�

∂x1

)] ∣∣x1=∞
x1=−∞ dx2

−
∫ ∞

−∞

∫ ∞

−∞
x2

(
−(c11x1 + c12x2)� + D1

∂�

∂x1

)
dx1dx2

+
∫ ∞

−∞
x1x2

(
−(c21x1 + c22x2)� + D2

∂�

∂x2

) ∣∣x2=∞
x2=−∞ dx1

−
∫ ∞

−∞

∫ ∞

−∞
x1

(
−(c21x1 + c22x2)� + D2

∂�

∂x2

)
dx1dx2

= c11
〈
x1x2

〉 + c12
〈
x2

2

〉 − D1

[∫ ∞

−∞
x2�

∣∣x1=∞
x1=−∞ dx2

]

+ c21
〈
x2

1

〉 + c22〈x1x2〉 − D2

[∫ ∞

−∞
x1�

∣∣x1=∞
x1=−∞ dx1

]

= c21
〈
x2

1

〉 + (c11 + c22)〈x1x2〉 + c12
〈
x2

2

〉
.

Equation (18) results by combining these equations with a similar calculation for
d〈x2

2 〉/dt .
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Since the determinant of

⎛

⎜⎝
2c11 2c12 0

c21 c11 + c22 c12

0 2c21 2c22

⎞

⎟⎠

is 4(c11 + c22)(c11c22 − c12c21) < 0 at an interior ESS, Cramer’s Rule implies the
equilibrium of (18) is

⎛

⎜⎝
〈x2

1 〉
〈x1x2〉
〈x2

2 〉

⎞

⎟⎠ = 1
(c11 + c22)(c11c22 − c12c21)

⎛

⎜⎝
−(c11 + c22)c22 D1 − c12(c12 D2 − c21 D1)

c11c12 D2 + c21c22 D1

−(c11 + c22)c11 D2 − c21(c21 D1 − c12 D2)

⎞

⎟⎠ .

Furthermore, if
(

x

y

)

is an eigenvector of

(
c11 c12

c21 c22

)

with eigenvalue λ, then

⎛

⎜⎝
x2

xy

y2

⎞

⎟⎠

is an eigenvector of
⎛

⎜⎝
2c11 2c12 0

c21 c11 + c22 c12

0 2c21 2c22

⎞

⎟⎠

with eigenvalue 2λ. The third eigenvalue is c11 + c22 < 0 with eigenvector
⎛

⎜⎝
2c12

−c11 + c22

−2c21

⎞

⎟⎠ .

Thus, the equilibrium is stable if and only if p∗ is an ESS.
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To assist with the notational complexity in the main text, the following table is
provided. The subscripts i and j here take on the values of 1 and 2.

Ri possible individual phenotypes (or strategies)
ai j payoff of an Ri -strategist in a pairwise contest with Rj

fi expected payoff to Ri -strategist
pi frequency of Ri -strategists
�2 set of frequency vectors (p1, p2)
ni number of Ri -strategists
N total population size (equal to n1 + n2)
β logistic density parameter inversely related to carrying capacity
Wi fitness of an Ri -strategist (equal to fi + 1 − βN)
bi j adjusted payoff of an Ri -strategist (equal to ai j + 1)
bi positive component of fitness of an Ri -strategist (equals fi + 1)
�(n1, n2; t) probability that the number of Ri -strategists is ni at time t

if n2 = 0, this is also denoted as �(n1; t)
E±

i operator that shifts the number of Ri -strategists by ±1 individual
pn,m one-step transition probability from state n to state m
xi number of Ri -strategists relative to equilibrium n∗

i (equals ni − n∗
i )

〈arg〉 expected value of the argument arg
σ 2

arg variance of the argument arg
cov(n1, n2) covariance of n1 and n2
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