
INTRODUCTION

Many strategies have been developed by insects to sur-
vive adverse environmental conditions. The egg stage is
the principal overwintering stage in many insects and
other terrestrial arthropods, and considerable interest has
been shown by entomologists in the cold resistance of
eggs (SØmme, 1982, 2000; Gehrken, 1989; Hanson &
Craig, 1994; Block et al., 1995; Strathdee et al., 1995;
Shintani & Ishikawa, 1999; Jing & Kang, 2003). Cold
hardiness is defined as the capacity of a species to survive
long or short term exposure to low temperature (Lee,
1991). This capacity is influenced by many factors,
including developmental stage, genetic potential, season,
duration of exposure and nutritional status. Insects are
commonly classified into two main categories: freeze
intolerant and freeze tolerant (Storey & Storey, 1988;
Lee, 1991). The supercooling point (SCP) is considered
an indicator of the lower lethal temperature, but many
researchers argue that the SCP is not a reliable index of
cold hardiness since some insects die before their body
freezes (Bale, 1993, 1996). Neither the lower lethal tem-
perature of freeze tolerant insects, nor the supercooling
capacity of freeze intolerant insects should be considered
the only measure of the cold hardiness of a given species
(Nedv d, 2000a). In addition, the ability to survive pro-
longed periods of cold exposure must be evaluated at
temperatures both above and below the freezing point of
the insects’ body fluids (Sømme, 1996).

Cold hardiness has been studied in many insects and
mites (Lee, 1991; Nedv d, 2000b; Sømme, 2000; Bale,
2002). However, apart from several papers documenting
the SCPs of Locusta migratoria (Lozina-Lozinskii, 1974;
Jing & Kang, 2003), Myrmeleotettix palpalis, Aerope-

dellus varigatus minutus and Dasyhippus barbipes (Block
et al., 1995), and Hemideina maori (Ramløv et al. 1992;
Ramløv, 1999), there are few available data on cold har-
diness of Orthoptera, especially the Acrididae.

The grasshopper, Chorthippus fallax (Zubovsky),
causes visible grass loss in China’s Inner Mongolian
steppe region (Li & Kang, 1991; Lockwood et al., 1994).
The species is univoltine and overwinters as eggs in the
soil. The eggs are laid in mid/late September and hatch
the following July, therefore, C. fallax can be considered
a late hatching species (Kang & Chen, 1994a, b). We
have observed that the embryos of grasshopper eggs col-
lected from local fields in the mid-November were in
stage 9–13 (according to the standard of Van Horn,
1966), and maintenance at a constant 25°C indicated that
the grasshopper eggs entered diapause in embryonic stage
18–19 (unpublished data). Consequently the grasshopper
overwinters as eggs in the pre-diapause embryonic stage.
These overwintering eggs will experience a prolonged
period of low temperature in winter. Since the cold hardi-
ness of C. fallax eggs is critical to determine their sur-
vival, it has a major influence on population dynamics in
following seasons. Although there have been some eco-
logical studies on C. fallax, including food selection,
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importance of the overwintering strategy and the relationship between diapause and cold hardiness of this species is discussed.
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resource utilization, egg pod location and identification,
and population dynamics (Li et al., 1983; Li & Chen,
1985, 1987; Liu et al., 1990; Kang & Chen, 1994a, b),
there has been no comprehensive study of the cryo-
biology of this species.

Considering this grasshopper as a late hatching species
that overwinters as pre-diapause eggs raises two ques-
tions: (1) is there a difference in cold hardiness between
pre-diapause and diapause eggs? (2) can pre-diapause
eggs safely overwinter and hatch in the following July?
This study attempts to answer these two questions by
investigating the cold hardiness and supercooling
capacity of C. fallax eggs in different embryonic stages.
This research should improve understanding of the over-
wintering capabilities, survival capacity and population
dynamics of this grasshopper in following seasons.

MATERIALS AND METHODS

Egg origin and collection

Grasshopper eggs were obtained from adults collected at the
Chinese Academy of Sciences Inner Mongolia Grassland Eco-
system Research Station (43°26’–44°08’N, 116°04’–117°05’E,
and 1000–1050 m in elevation). Adult grasshoppers were main-
tained at 28°C ± 1°C during the day and 20°C ± 1°C at night
with a photoperiod of 14L : 10D. The grasshoppers were fed on
wild host plants collected from the field (Li & Chen, 1985). Soil
from the collection area was sieved through a 2 mm mesh and
placed on the bottom of cages as an oviposition substrate. The
soil layer was approximately 15 cm deep, and was moistened
each day. Egg pods were collected from the oviposition cages
weekly and prepared for study as follows: egg pods were rinsed
from soil into a sieve and placed in small plastic boxes which
contained washed silica sand (40 mesh) that had been moistened
to the point of being wet but without free standing water. The
boxes with egg pods and sand were placed in a 25°C ± 1°C
incubator for 20 days to obtain pre-diapause eggs (embryos
were in about stage 11–13), for 60 days to allow the eggs to
reach the diapause stage (embryos were in stage 18–19), and
some diapause eggs were placed at 0°C ± 1°C for 90 days to ter-
minate diapause and then transferred to 25°C ± 1°C for 10 days
to obtain post-diapause eggs (embryos were in stage 22–23).

Acclimation

The grasshopper eggs at pre-diapause, diapause and post-
diapause embryonic stages were kept at 5°C ± 1°C for 0, 30 , 60
and 90 days. The SCPs of the eggs were measured on batches of
15–25 eggs from each treatment group (2 eggs were taken from
each egg pod). 

Determination of supercooling point (SCP)

The SCPs of eggs at different developmental stages (pre-
diapause, diapause and post-diapause) and from different low
temperature acclimation treatments were measured. After the
surface of each egg was dried with filter paper, individual eggs
were fixed with plastic tape to the tip of a thermocouple which
was linked to a recorder (uR100, Model 4152, Yologama Elect.
Co., Seoul, Korea). The thermocouple with the egg was placed
inside an insulating styrofoam box in a freezer to ensure that the
cooling rate was about 1°C min–1. The lowest temperature
reached before an exothermic event occurred due to release of
latent heat was regarded as the supercooling point of the eggs
(Zhao & Kang, 2000; Chen & Kang, 2002).

Determination of lethal temperature and lethal time

To evaluate survival at low temperature, for each of 12 treat-
ments, 6 replicates of 20 diapause eggs were exposed to –25°C
± 0.5°C for 0.5, 1, 2, 4, 8, 16 days and to –15°C, –20°C, –25°C,
–30°C, –35°C and –40°C ± 0.5°C for 12 h. Additional batches
of eggs were kept at 0°C ± 1°C for 90 days, which terminated
diapause. After treatment, eggs were removed and kept in dark
chambers at 25°C ± 1°C. Egg mortality and hatching success
were recorded daily for 60 days. Eggs that became flaccid,
brown or moldy were considered dead whereas those that were
cream-colored and turgid were considered alive (Fisher, 1997).

Statistical methods

Multi-way Analysis of variance (ANOVA) (SPSS 10.0 Soft-
ware) was used to determine the effects of constant low tem-
peratures and exposure duration on supercooling points and
hatching rate. The Tukey Honest Significant Difference (HSD)
test was used to detect significant differences between means.
The form of the relationship between survival rate and time or
temperature of exposure was determined by Weibull function or
Probit analysis (see Kalushkov & Nedv d, 2000). The exposure
duration that resulted in 50% survival (Ltime50), or the exposure
temperature that resulted in 50% survival (Ltemp.50), was esti-
mated.

RESULTS

Supercooling capacity and the effects of low

temperature acclimation

The SCPs of 117 non-acclimated and acclimated pre-
diapause eggs at 5°C varied from –6°C to –32.4°C. The
frequency distribution of SCPs was significantly bimodal,
indicating the existence of a low (SCP < –15°C) and a
high SCP group (SCP > –15°C) (Table 1). Although the
mean SCP of non-acclimated pre-diapause eggs in the
low SCP group was not significantly different from that
of acclimated eggs (F = 1.719, df1 = 3, df2 = 101, P =
0.167), there was a tendency for the number of eggs with
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*Mean SCP of non-acclimated pre-diapause eggs in the low SCP group was not significantly different from that of acclimated eggs
(F = 1.719, df1 = 3, df2 = 101, P = 0.167)

–10.0 – –6.01.885  –7.5–31.8 – –21.83.186–28.93190

–14.0 – –6.82.803–10.5–32.4 – –21.81.261–29.54560

  –9.0 – –6.71.162  –7.7–31.3 – –24.52.020–28.11830

–30.5 – –24.11.608–28.8220

Range (°C)SD Mean (°C)*Range (°C)SD Mean (°C)*

High SCP groupLow SCP groupNAcclimation time(day)

TABLE 1. Mean, standard deviation and range of SCPs of non-acclimated and acclimated pre-diapause eggs of the grasshopper C.

fallax.



SCPs < –30°C to increase with extended duration of
acclimation.

Effects of egg developmental stage on SCP

Differences in SCP and the effects of low temperature
acclimation on the SCP of pre-diapause, diapause and
post-diapause eggs were examined. The SCPs of eggs in
pre-diapause and diapause conditions were similar, but
significantly lower than that of post-diapause eggs (F(2, 128)

= 55.26, P < 0.0001). Though low temperature acclima-
tion could slightly decrease the SCP of eggs from –28.8 ±
1.6°C to –29.5 ± 1.3°C in pre-diapause eggs, –30.7 ±
1.0°C to –31.1 ± 0.8° in diapause eggs, and from –12.88
± 5.58°C to –13.53 ± 4.52°C in post-diapause eggs, the
effect of acclimation was not markedly different (F(1, 128) =
0.313, P = 0.577), and there was no significant statistical
interaction between acclimation and developmental stage
(F(2, 128) = 1.728, P = 0.182). Regardless of whether eggs
had been acclimated or not, diapause eggs had the lowest
SCPs (Fig. 1).

Low lethal temperature

The survival rates of diapause eggs exposed to different
low constant temperatures for 12 hrs were determined.
Survival rates of eggs at –25°C or higher were not signifi-

cantly different, nonetheless survival rate declined signifi-
cantly at –30°C and suddenly dropped to zero at –35°C
(Fig. 2). The response curve was an asymmetric sigmoid,
so that the Weibull function was used to describe the rela-
tionship between survival and exposure time. The
Weibull function was P = 1–exp(–(t + 35.008)2/18.035)
(t: temperature, Pearson goodness of fit Chi-square was
significant, df = 34, P < 0.0001, R2 = 0.946). The
Ltemp10, Ltemp50 and Ltemp90 values of diapause eggs
exposed to low temperatures for 12 hrs were estimated as
–33.6°C, –31.5°C and –28.6°C respectively, and the
lowest temperature for egg survival was about –35°C.

Lethal time

The survival rates of diapause eggs exposed to –25°C
for different periods are shown in Fig. 3. Survival rates of
diapause eggs at –25°C decreased slowly with increasing
duration of exposure to low temperature. But there was
no significant difference between 0 d and exposures of
0.5, 1, 2, and 4 ds. Only the survival rates of eggs
exposed for 8 and 16 ds were significantly less than those
exposed for shorter lengths of time. The dose response
curve was not sigmoid, so the Probit function was used to
describe their relationship. The function was ln(p/(1–p)) =
2.2224 + 0.05089t (t: time, Pearson goodness of fit Chi-
square was significant, df = 40 and P = 0.0197, R2 =
0.832). Probit analysis of egg survival vs exposure time
indicates that the Ltime10, Ltime50 and Ltime90 values of
diapause eggs at –25°C were about 87 d, 44 d and 0.5 d
respectively.

DISCUSSION

Supercooling and survival

The results of this study show that the SCPs of pre-
diapause eggs could be divided into low and high SCP
groups (Table 1). The mean SCPs of eggs were approxi-
mately –29°C for the low group (range from –21.8°C to
32.4°C), and –8°C for the high group (range from –6°C to
–14°C). The percentage of eggs in low group was 88%. A
substantial number of individual eggs froze at tempera-
ture several degrees lower than the mean value, and some
eggs had SCPs as low as –32°. This result was similar to
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Fig. 1. SCPs of C. fallax eggs in different stages of embryonic
development, non acclimation and acclimation at 5°C for 60
days. Bars (mean ± SD) with the same letter below are not sig-
nificantly different.

Fig. 3. Survival rate of diapause eggs of C. fallax exposed to
–25°C for different lengths of time. Bars (mean ± SD) with the
same letter below are not significantly different.

Fig. 2. Survival rate of diapause eggs of C. fallax exposed to
different low constant temperatures for 12 hours. Bars (mean ±
SD) with the same letter below are not significantly different.



those recorded in M. palpalis, A. varigatus minutus and
D. barbipes (early hatching grasshoppers also found in
the Inner Mongolian steppe) (Block et al., 1995). It
appears that there are two types of overwintering eggs in
grasshoppers, some eggs die at relatively high subzero
temperatures while others do not.

There was a close correlation between SCP and both
lethal temperature and lethal time. The SCPs of diapause
eggs were similar to their lethal temperature. The survival
rates of diapause eggs of C. fallax at > –25°C and at 25°C
(control treatment) were not significantly different, while
survival rates at < –30°C were significantly decreased
(Fig. 2). The Ltemp50 for 12 hrs was –31.5°C, and the
mean SCP of diapause eggs was –30.7°C for non-
acclimated and –31.1°C for acclimated eggs. Previous
studies have demonstrated that the SCP is not a suitable
index for cold hardiness of many species as it does not
take into account mortality at sub-zero temperatures
above the insect’s supercooling point (Milonas & Savo-
poulou, 1999; Nedv d, 2000a; Bale, 2002 ). However, a
good correlation between survival at low temperature and
SCP in several species has also been reported, and in
these species it is suggested that the SCP is a reliable
indicator of low temperature tolerance (Lee & Denlinger,
1985; Nedv d et al., 1995; Hodková & Hodek, 1997).
Even though slight mortality of diapause eggs was
observed after prolonged exposure at sub-zero tempera-
ture (Ltime50 at –25°C was about 44 days), this may not
have been caused by low temperature injury but by dehy-
dration (Renault et al., 2002). Thus the supercooling
capacity of grasshopper eggs might indeed be a conven-
ient indicator of their cold hardiness.

Cold hardiness strategies of insects are often divided
into two types with respect to their cold tolerance and
overwintering strategies. Freeze-tolerant insects survive
freezing; they can tolerate temperatures below their SCP.
Freeze intolerant insects freeze and die at their SCPs. The

freeze intolerance strategy is further divided into four
more classes: freeze avoidance, chill tolerance, chill sus-
ceptibility, and opportunistic survival (Bale, 1993, 1996).
The freeze avoidance strategy is similar to the freeze
intolerance, but with a strict definition. Bale (1993) cited
only two species, the moths Epiblema scudderiana and
Epirrita autumnata, as examples of freeze avoidance that
survive exposures “as long as the minimum winter tem-
peratures remain above the SCP”. Considering the close
correlation of SCP and lower lethal temperature, as well
as very slight increase of mortality with time at tempera-
ture just above SCP (lethal time at –25°C), diapause eggs
of C. fallax can be classified as freeze avoiding species
(Bale, 1996) or the cold injury class DOC (Nedv d,
2000b). Chorthippus fallax may represent the first experi-
mental example of true freeze avoiding insect, while the
previous examples, the moths E. scudderiana and E.

autumnata, were suggested as freeze avoiding only
according to ambient air temperature measurements (Vir-
tanen et al., 1998; Nedv d, personal communication).

Diapause and acclimation

Diapause is a genetically programmed process that
enables insects to tolerate predictably unfavorable condi-
tions, such as extreme temperatures, drought or limited
food supply. There is conflicting evidence as to the exis-
tence of a relationship between diapause and cold hardi-
ness (Denlinger, 1991; Pullin, 1996; Koš ál & Šimek,
1995; Koš ál et al., 2001). In some insects species, super-
cooling capacity or cold hardiness in the diapause stage is
higher than that of the non-diapause stage, suggesting that
cold hardiness is likely to be an integral part of diapause
(Hodková & Hodek, 1994; Han et al., 1995; Milonas &
Savopoulou, 1999; Watanabe & Tanaka, 1999; Jo & Kim,
2001; Šlachta et al., 2002). While in other species cold
hardiness can occur completely independently of dia-
pause (Salt, 1961; Ring, 1972). The eggs of C. fallax,

however, differ from the above mentioned pattern since
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Fig. 4. Maximum, mean and minimum air temperatures at 150 cm height, soil surface and at 5 cm below the soil surface recorded
at the Inner Mongolia Grassland Ecosystem Research Station during 1970–2000.



the SCPs of pre-diapause and diapause eggs are similar,
but significantly lower than that of post-diapause eggs.

By comparing the distribution of SCPs and lethal tem-
perature data, it is evident that the SCPs of the lower SCP
group of eggs lie within the Ltemp10 and Ltemp90 values
of sample groups. Analysis of local winter climate condi-
tions (Fig. 4) suggests that pre-diapause and diapause
eggs in the lower SCP group, but not post-diapause eggs
in higher SCP group, could safely survive the lowest
winter temperatures. Nonetheless, if spring or early
summer temperatures are lower than –8°C, the post-
diapause eggs would suffer severe cold injury and high
mortality.

It was reported that acclimation to low temperature can
raise the supercooling capacity and cold tolerance of
organisms (Fields et al., 1998). Our results also indicate
that acclimation to low temperature can slightly increase
the supercooling capacity of both pre-diapause and dia-
pause eggs. The slow decline of temperature in autumn
may also have acclimation effects and enhance the cold
hardiness of C. fallax eggs with respect to the coming
winter.
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