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Abstract Small mammals inhabiting temperate and arc-

tic regions exhibit annual adaptive adjustments in physi-

ology, anatomy, and behavior. No data on the physiology

of Maximowicz’s voles (Microtus maximowiczii) are

available at present. Here we examined the seasonal

changes in body mass, food intake, thermogenic capacity,

serum leptin and thyroid hormone levels in wild-captured

individuals from Inner Mongolian grassland, China. We

further examined the effects of photoperiod on these

parameters. Energy intake, resting metabolic rate, nonshi-

vering thermogenesis (NST), and serum tri-iodothyronine

(T3) levels increased while serum leptin and body mass

decreased in the cold seasons. Serum T3 levels were pos-

itively correlated with NST and uncoupling protein 1

(UCP1) contents in brown adipose tissue, and leptin levels

were negatively correlated with energy intake and resting

metabolic rate. Furthermore, laboratory data showed these

changes could be induced by short photoperiod alone.

Taken together, our results indicate that Maximowicz’s

voles can increase thermogenic capacity and energy intake

to cope with cold stress. Serum leptin seems to be involved

in the regulation of energy intake and changes in T3 level

may be important for the variations in NST and/or UCP1.

Short photoperiod can serve as a seasonal cue for the

winter acclimatization of energy balance in free-living

Maximowicz’s voles.

Keywords Maximowicz’s voles (Microtus

maximowiczii) � Seasonality � Energy intake �
Thermogenesis � Leptin � Photoperiod

Introduction

Survival of nonhibernating small mammals residing in

temperate and arctic regions is strongly influenced by low

temperature coupled with reduced food availability during

winter (Merritt and Zegerts 1991). With fluctuations in

climate conditions, some winter-active rodent species

showed reduction in body mass and body fat mass and

increase in nonshivering thermogenesis (NST) (Mezhzh-

erin 1964; Heldmaier 1989; Lovegrove 2005), such as

Siberian hamsters (Phodopus sungorus) (Klingenspor et al.

2000), Brandt’s voles (Lasiopodomys brandtii) (Li and

Wang 2005a), and root voles (Microtus oeconomus) (Wang

et al. 2006a). Brown adipose tissue (BAT) is the major site

of NST (Jansky 1973; Foster and Frydman 1979; Lowell

and Spiegelman 2000), which is innervated by sympathetic

nervous system and modulated by hypothalamic-pituitary-

thyroid axis (Silva 2006; Cannon and Nedergaard 2004).

The capacity for NST in BAT entirely depends on

uncoupling protein 1(UCP1), a 32-kD carrier protein,

which renders the inner membrane of the mitochondria

‘‘leaky’’ and hence releases energy in the form of heat

rather than storing it as ATP (Nicholls and Locke 1984;

Krauss et al. 2005).

Regulation of body mass and adiposity has been sug-

gested to involve a lipostatic control system in which

hormonal signals circulate in proportion to body fat

reserves (Kennedy 1953; Schwartz et al. 2000). Leptin, a

167-amino acid product of the ob gene mainly in the adi-

pocytes (Zhang et al. 1994), provides an attractive
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candidate regulator of body mass by acting on the neuro-

peptide circuits in the hypothalamus (Friedman and Halaas

1998). Leptin was originally thought to act to prevent

obesity but was later found to serve mainly as a mediator of

adaptation to fasting in energy homeostasis (Ahima and

Flier 2000). Most of these studies were carried out on

laboratory rodents such as rats and mice. Therefore, more

data for the role of leptin in regulating energy balance for

wild seasonal mammals are needed. Available data showed

that several seasonal mammals undergo annual cycles of

food intake and adiposity coupled with seasonal changes in

circulating leptin levels such as Siberian hamsters (Drazen

et al. 2000), woodchucks (Marmota monax) (Concannon

et al. 2001), collared lemmings (Dicrostonyx torquatus)

(Johnson et al. 2004), Brandt’s voles (Li and Wang 2005a),

root voles (Wang et al. 2006a), plateau pikas (Ochtona

curzoniae) (Wang et al. 2006b), and field voles (Microtus

agrestis) (Król et al. 2006a). A positively functional rela-

tionship between leptin levels and thermogenic activity of

BAT has been demonstrated in the post-cafeteria model of

obesity and via administration of exogenous leptin (Scar-

pace et al. 1997; Commins et al. 2001).

Photoperiod is a more reliable environmental cue than

temperature since its seasonality has astronomical preci-

sion. The effects of photoperiod on acclimation of ther-

moregulation, body mass and energy budgets have been

demonstrated in many rodent species (Heldmaier et al.

1981; Bartness and Wade 1985; Rousseau et al. 2003).

Generally, short photoperiod can markedly reduce body

mass and enhance thermogenic capacity in some small

mammals (Dark et al. 1983; Voltura and Wunder 1998);

however, it can also significantly increase body mass in

some small species such as collared lemmings (Powell

et al. 2002) and golden hamsters (Mesocricetus auratus)

(Jansky et al. 1986). Such species that show specific vari-

ations of photoperiod-mediated changes in body mass also

involve interactions between peripheral and central hor-

monal signaling systems, as well as regulations of NST

(Mercer and Tups 2003).

Maximowiczi’s voles (Microtus maximowiczii Schrenk,

1859) mainly inhabit marsh, meadow and bank-forest areas

of Northeastern China and the adjacent Russia and Mon-

golia. They are herbivorous and store food during the late

autumn for overwintering. Because of their low population

densities and limited distribution, a little is known about

their ecophysiology. In the present study, we examined

several behavioral, physiological, hormonal, and bio-

chemical processes in captive seasonally acclimatized

voles and photoperiod acclimated voles to examine the role

of leptin in the regulation of energy balance and thermo-

genesis for seasonal and photoperiodic animals. We pre-

dicted that Maximowiczi’s voles, like other sympatric

species such as Brandt’s voles (Li and Wang 2005a), will

enhance their winter survival by making seasonal adjust-

ments in body mass and thermogenesis associated with

seasonal variations in serum leptin and thyroid hormones.

We also predicted that similar changes can be induced

under short photoperiod acclimation in Maximowiczi’s

voles.

Materials and methods

Animals and experimental protocol

Maximowiczi’s voles used in experiment 1 were live

trapped from the Inner Mongolian grassland Ecosystem

Research Station of the Chinese Academy of Sciences

(43�30N, 116�410E) in April 2005. The voles were housed

under a natural photoperiod and ambient temperature.

Only adult voles were used excluding pregnant or lac-

tating females. The voles used in experiment 2 were first-

generation born in captivity and raised under a 16L:8D

photoperiod (lights on 04:30 a.m.) at an ambient tem-

perature around 21�C (range 20–22�C). Each group

included in this study was provided standard rabbit chow

(Beijing Ke Ao Feed Co.) and water ad libitum. Voles

from the field were supplemented with fresh China

Aneurolepidium (Aneurolepidium chinense), Schmidt

Sedge (Carex schmidtti) and slices of carrot during the

4-week habituation period after capture. Animals were

maintained individually in plastic cages (30 9 15 9

20 cm). Sawdust was used as bedding material. All

studies were conducted with the approval of the Animal

Care and Use Committee of Institute of Zoology, the

Chinese Academy of Sciences.

Experiment 1: seasonal acclimatization

To investigate the seasonal changes in body mass, energy

intake, and thermogenesis, the voles were randomly

assigned into one of the six experimental groups (each

group included 3 females and 3–5 males). Experiments

were performed in May, June, July, September, October

and December under natural photoperiod and ambient

temperature (Li and Wang 2005a). Energy intake, RMR,

and NST were measured monthly. At the end of the

experiment, animals were killed between 09:00 and 11:00

a.m. by puncture of the posterior vena cava. Blood was

centrifuged at 4,000 rpm for 30 min, and serum was

sampled and stored at -20�C for later measurement. The

interscapular BAT was surgically removed and immedi-

ately frozen in liquid nitrogen and stored at -80�C for

determining BAT cytochrome c oxidase (COX) activity

and UCP1 content. An additional group of voles was also

individually housed in natural environmental conditions in
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May 2005, and their body mass were monitored weekly at

09:00 a.m. during the course of the experiment.

Experiment 2: short photoperiod acclimation

To investigate the effects of photoperiod on seasonal chan-

ges in the physiological parameters measured in experiment

1, the voles were randomly assigned into one of the two

experimental groups that were acclimated either to short

photoperiod (SD, 8L:16D with light on at 8:00 a.m., 3 males

and 3 females) or to long photoperiod (LD, 16L:8D with

lights on at 04:30 a.m., 3 males and 4 females). Body mass,

metabolic parameters (RMR and NST), and energy intake

were measured on the day before the start of photoperiod

acclimation (Day 0) and the end of the test. After 4 weeks

acclimation, animals were killed and blood samples and

BAT were also collected between 09:00 and 11:00 a.m.

Metabolic trials

RMR and NST were measured in a closed-circuit respi-

rometer (Grodzinski and Wunder 1975; Wang et al. 2000).

The metabolic chamber size was 3.6 L. Chamber temper-

ature was controlled within ±0.5�C by a water bath. Car-

bon dioxide and water in the metabolic chambers were

absorbed with KOH and silica gel, respectively. Animals

were weighed before and after each test. To minimize the

effect of circadian rhythms, all measurements were made

between 9:00 a.m. and 5:00 p.m.

RMR was measured at 29 ± 0.5�C, which is within

their thermoneutral zone (25–32.5�C) (Chen et al. 2006).

After 60 min of habituation in the chamber, metabolic

measurements were conducted for further 60 min at 5 min

intervals. Two continuous stable minimum recordings were

used to calculate RMR.

Maximum NST was defined as the total metabolic

response to norepinephrine (NE) (Heldmaier et al. 1982)

and was induced by a subcutaneous injection of NE at

25 ± 0.5�C, which is near the lower critical temperature

(Chen et al. 2006). The mass-dependent dosage of NE

(Shanghai Harvest Pharmaceutical Co. Ltd) was calculated

according to the equation described by Heldmaier (1971).

Oxygen consumption was recorded for further 60 min at

5 min intervals. The two consecutive stable maximal

recordings of oxygen consumption were used to calculate

the maximum NST (Wang and Wang 1996; Li et al. 2001).

RMR and NST values were corrected to the standard

temperature and air pressure (STP) conditions.

Energy budget

Food intake was measured in metabolic cages for 3 days as

described previously (Liu et al. 2002). During each test,

food was provided quantitatively and water was provided

ad libitum. Food residues and feces were collected from

each animal after a 3-day test and separated after they were

dried at 60�C to constant mass (Liu et al. 2002). The

caloric values of food and feces were determined by an

oxygen bomb calorimeter (Parr 1281, Parr Instrument,

USA). Gross energy intake (GEI), digestible energy intake

(DEI), and apparent digestibility of energy (hereafter

referred to as digestibility) were calculated by the follow-

ing equations (Grodzinski and Wunder 1975; Liu et al.

2002):

GEI (kJ/day) ¼ dry matter intake (DMI) (g/day)

� energy content of food (kJ/g);

DEI (kJ/day) ¼ GEI� [dry mass of feces g/dayð Þ
� energy content of feces (kJ/g)];

Digestibility (%Þ ¼ DEI=GEI� 100%:

Measurement of cytochrome c oxidase activity, UCP1

and serum leptin

Mitochondrial protein was prepared as described in Wie-

singer et al. (1989). Total mitochondrial protein content

was determined by the Folin phenol method (Lowry et al.

1951) with bovine serum albumin as the standards. The

COX activity was measured with the polarographical

method using oxygen electrode units (Hansatech Instru-

ments Ltd, England) (Zhao and Wang 2005).

BAT mitochondrial protein (5 ll:4 lg/ll) was diluted in

5 ll sample buffer and run on a SDS–polyacrylamide gel

(3% stacking gel and 12.5% running gel) together with a

prestained protein marker for about 2 h. Then the protein

was transferred to a nitrocellulose membrane (Hybond-C,

Amersham Biosciences, England). After blocking against

non-specific binding by 5% skim milk at 4�C overnight, the

membrane was incubated with a rabbit polyclonal antibody

to hamster UCP1 (1:5,000, UCP1 antibody was supplied by

Dr. Klingenspor, Department of Biology, Philipps-Uni-

versity Marburg, Germany) for 2 h and then incubated with

peroxidase-conjugated goat anti-rabbit IgG (1:5,000)

(Jackson Immuno-Research Laboratories, INC, USA) for

2 h, washed in washing buffer and then incubated with an

enhanced chemoluminescence kit (ECL, Amersham Bio-

sciences, England) for 5 min at room temperature. Signals

were detected by exposing the membrane to autoradiog-

raphy film. UCP1 content was expressed as relative units

(RU) and quantified with Scion Image Software (Scion

Corporation) and was expressed as relative units (RU)

(Li and Wang 2005a, b).

Serum leptin levels were measured by radioimmunoas-

say (RIA) using the Linco125 Muti-species Kit (St. Louis,

MO, USA) and leptin values were determined in a single

RIA. The lowest levels of leptin that can be detected by this
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assay were 1.0 ng/ml when using a 100-ll sample size.

Inter- and intra-assay variability for leptin RIA was \3.6

and 8.7%, respectively.

Serum tri-iodothyronine (T3) and thyroxine (T4) were

quantified by radioimmunoassy using RIA kits (China

Institute of Atomic Energy, Beijing, China). Intra- and

inter-assay coefficients of variation were 2.4 and 8.8% for

the T3, and 4.3 and 7.6% for T4, respectively.

Carcass composition analysis

The entire gastrointestinal tract was removed, and the evis-

cerated carcass (not including BAT) was dried to constant

mass at 60�C for the determination of dry body mass. Total

body fat was extracted from the dried carcass by ether

extraction in a Soxhlet apparatus (Li and Wang 2005a).

Statistical analysis

Data were analyzed using the SPSS software package

(13.0). Distributions of all variables were tested for nor-

mality by the Kolmogorov–Smirnov test and data that were

abnormally distributed were transformed to natural loga-

rithms. The sample size in each gender was small; there-

fore, all data for both sexes were pooled together for the

analyses. Seasonal data such as COX activity, mitochon-

drial protein content, thyroid hormones and UCP1 were

analyzed by one-way analysis of variance (ANOVA) and

significant group differences were further evaluated by

LSD post hoc test. RMR, NST, body composition, serum

leptin levels, and energy intake in both experiments were

tested by analysis of covariance (ANCOVA) with body

mass as the covariate. Seasonal changes of body mass were

assessed by repeated measures analysis of variance (RM

ANOVA). For experiment 2, group differences of ther-

mogenic parameters and body composition were examined

by independent-samples t test, and differences over the

course of the acclimation were analyzed by paired-samples

t test. Pearson correlation analysis were used to detect the

possible correlation of serum leptin levels with body mass,

body fat mass, and UCP1 content, and also between UCP1

and NST, and serum T3 levels. Results are presented as

mean ± SE (n sample size) in the test, and P \ 0.05 was

considered to be statistically significant.

Results

Experiment 1

Seasonal changes in body mass, RMR, and NST

Body mass changed with seasons (F(28,252) = 10.388,

P \ 0.01, Fig. 1). Body mass kept relatively stable from 5

May (41.3 ± 2.0 g) to 28 July (39.6 ± 2.7 g) (LSD,

P [ 0.05), and then decreased gradually since 4 August,

and reached the minimum on 17 November (31.1 ± 1.5 g).

Compared with the initial body mass, the final body mass

was reduced by 24.7% (Fig. 1).

Both RMR and NST showed marked seasonal changes

(RMR, F(5,34) = 5.690, P \ 0.01; NST, F(5,34) = 2.877,

P \ 0.05, Table 1). The lowest RMR was recorded in June

as compared with that of other seasons. Similarly, the NST

in June (176.1 ± 13.8 ml O2/h) was lower than in other

seasons (e.g., October: 219.8 ± 13.6 ml O2/h, November:

219.1 ± 13.4 ml O2/h).

Seasonal changes in energy intake and digestibility

Maximowiczi’s voles showed seasonal variations in their

DMI and GEI (DMI: F(5,34) = 10.507, P \ 0.01, Fig. 2a;

GEI: F(5,34) = 10.602, P \ 0.01, Fig. 2b). GEI in November

was 72% higher than that in July (LSD, P \ 0.01). Same

patterns were found in DEI (F(5,34) = 6.529, P \ 0.01,

Fig. 2c). The digestibility also fluctuated markedly

(F(5,35) = 6.011, P \ 0.01, Fig. 2d). From June to Septem-

ber the digestibility gradually decreased, then increased

again from September to November. The digestibility in May

was 12.6% higher than that in September.

Seasonal changes in mitochondrial protein content, COX

activity and UCP1 content in BAT

There was significant difference in the absolute mass of BAT

(F(5,35) = 2.543, P [ 0.05), but there was no significant dif-

ference in relative BAT mass among groups (F(5,35) = 4.308,

P [ 0.05, Table 1). The mitochondrial protein content, BAT

COX activity and UCP1 varied significantly among seasons

(MP: F(5,35) = 5.746, P \ 0.01; COX: F(5,35) = 12.328,
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Fig. 1 Seasonal changes of body mass in Maximowiczi’s voles

(Microtus maximowiczii). Body mass of Maximowiczi’s voles keep

relative stable from 5 May to 28 July. From 4 August the voles’ body

mass declined slowly and reached the nadir in 17 November. Values

are expressed as mean ± SEM (n = 10)
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P \ 0.01; UCP1: F(5,35) = 4.692, P \ 0.01). The mitochon-

drial protein content and COX activity in October and

November were markedly higher than the other months. The

COX activity in October and November were 35 and 41%

higher than that in June, respectively. UCP1 in November was

40% higher than in June.

Seasonal changes in body composition and serum

hormones

The wet carcass mass showed significant seasonal changes

(F(5,34) = 2.919, P \ 0.05, Table 1). The highest values

occurred in June and no significant differences were found

among other groups. There were no marked variations

among seasons in dry carcass mass (F(5,34) = 1.248,

P [ 0.05), body fat mass (F(5,34) = 1.916, P [ 0.05), and

water of carcass (F(5,34) = 1.409, P [ 0.05) but body fat

content (F(5,35) = 3.170, P \ 0.05).

Seasonal alterations were also detected in serum leptin,

T3, and T4 levels (leptin: F(5,34) = 3.122, P \ 0.05; T3:

F(5,35) = 4.455, P \ 0.01; T4: F(5,35) = 2.580, P \ 0.05,

Table 1). The serum leptin (9.3±2.9 ng/ml) in June was

significantly higher than that in November (3.96 ± 1.32 ng/

ml). However, T3 level in June (0.74 ± 0.13 ng/ml) was

markedly lower than in November (1.88 ± 0.20 ng/ml).

Serum T4 and leptin levels gradually decreased from warmer

to colder months, and T4 showed a rise in September.

Correlation analysis showed that serum leptin levels were

correlated positively with overall body mass (r = 0.347,

P \ 0.05; Fig. 3a) and body fat mass (r = 0.54, P \ 0.001;

Fig. 3b) but negatively with RMR (r = -0.444, P \ 0.01;

Fig. 3c) and energy intake (r = -0.384, P \ 0.05; Fig. 3d),

while no significant correlation of serum leptin levels with

UCP1 content was found (r = -0.224, P [ 0.05). Serum T3

level were positively correlated with NST (r = 0.334,

P \ 0.05; Fig. 3e) and UCP1 content (r = 0.651, P \ 0.05;

Fig. 3f). NST was positively correlated with UCP1 content

(r = 0.402, P \ 0.05).

Experiment 2

Effect of photoperiod on body mass, RMR, NST

and energy intake

Prior to acclimation, no group differences (LD: 28.9 ± 2.4 g

and SD: 29.7 ± 2.7 g, df = 11, t = -0.244, P [ 0.05)

were detected in body mass (Fig. 4). During the course of

acclimation, no differences were observed between SD and

LD groups (df = 11, t = 1.593, P [ 0.05). SD voles showed

relatively constant body mass throughout the acclimation

period (F (3,15) = 1.606, P [ 0.05), whereas the LD voles

showed 14% increase over the 4-week acclimation

(F(3,18) = 7.617, P \ 0.01).T
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Initial RMR and NST showed no group differences prior

to photoperiodic acclimation (F(1,10) = 0.042, P [ 0.05 for

RMR; F(1,10) = 1.210, P [ 0.05 for NST, Table 2). At the

end of acclimation, the SD voles showed a 11.1% increase

(relative to the initial measurement) in NST, which was

significantly higher than that of LD voles (F(1,10) = 8.513,

P \ 0.05). However, no significant variations in RMR

were noted (F(1,10) = 0.063, P [ 0.05).

No significant differences were found in DMI, GEI, DEI

and digestibility between SD and LD group prior to accli-

mation (F(1,10) = 2.031, P [ 0.05 for DMI; F(1,10) = 2.031,

P [ 0.05 for GEI; F(1,10) = 1.810, P [ 0.05 for DEI;

df = 11, t = -0.576, P [ 0.05 for digestibility; Table 2).

At the end of the 4-week acclimation, the DMI, GEI and DEI

in SD voles were significantly higher than those in LD voles

(F(1, 10) = 14.398, P \ 0.01 for DMI; F(1, 10) = 2.031,

P \ 0.01 for GEI; F(1, 10) = 9.475, P \ 0.01 for DEI), but

the digestibility in SD voles was lower than LD voles

(df = 11, t = 2.622, P \ 0.05).

Effect of photoperiod on mitochondrial protein content

and COX activity

BAT mass and mitochondrial protein showed no differ-

ences between SD voles and LD voles (df = 11, t = 0.652,

P [ 0.05 for BAT mass; df = 11, t = -0.102, P [ 0.05

for mitochondrial protein, Table 3). However, the COX

activity showed significant differences (df = 11, t =

-3.185, P \ 0.01). The COX activity in SD voles was

32% higher than that of LD voles.

Effect of photoperiod on body composition and serum

hormones levels

After the 4-week photoperiod acclimation, there were no

significant differences in wet carcass mass (F(1,12) = 0.608,

P [ 0.05), dry carcass mass (F(1,12) = 0.184, P [ 0.05),

body fat mass (F(1,12) = 0.248, P [ 0.05, Table 3).

Serum T3 and T4 levels in LD voles were significantly

lower than those in SD voles (serum T3: df = 11, t =

-2.413, P \ 0.05; serum T4: df = 11, t = -2.561,

P \ 0.05, Table 3). No difference was found in serum leptin

levels between LD and SD voles (F(1,12) = 1.017, P [ 0.05,

Table 3). A positive correlation between serum leptin levels

and body fat mass was found (r = 0.62, P \ 0.05).

Discussion

Seasonal changes in body mass and body fat mass

Many winter-active small mammals residing in northern

regions were reported to undergo a decline in body mass in
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winter (Dehnel 1949; Merritt 1986; Heldmaier 1989;

Lovegrove 2005). However, some northern species showed

an increase in body mass when exposed to winter-like

conditions, such as collared lemmings (Nagy 1993) and

short-tailed shrews (Blarina brevicauda) (Merritt 1986). In

the present study, Maximowiczi’s voles showed 25%

reduction in body mass in winter, similar to Brandt’s voles

(Li and Wang 2005a), root voles (Wang et al. 2006a),

Siberian hamsters (Heldmaier et al. 1981), and Masked

shrews (Sorex cinereus) (Merritt 1995). In small mammals

(\0.1 kg), body mass reduction in winter can decrease

animals’ total energy requirements (Heldmaier 1989), but it

will also compromise their cold tolerance due to an

increase in surface area-to-volume ratio (Speakman 1996;

Jackson et al. 2001). It has been suggested that increased

insulation coupled with reduced activity and a burrowing

habit may help them to counteract those disadvantages

(Heldmaier 1989).

Accompanied with the reductions in body mass, Maxi-

mowiczi’s voles also display a significant loss in body fat

mass. Such changes were also documented in other rodent

species including Siberian hamsters (Klingenspor et al.

2000), meadow voles (Microtus pennsylvanicus) (Dark and

Zucker 1986), prairie voles (Microtus ochrogaster)

(Kriegsfeld and Nelson 1996), Brandt’s voles (Li and

Wang 2005a), and root voles (Wang et al. 2006a).

Seasonal changes in thermogenic capacities

To cope with cold stress, small mammals mainly increase

thermogenic capacity to maintain constant body tempera-

ture (Jansky 1973; Heldmaier et al. 1982). Our study found
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that NST and RMR of Maximowiczi’s voles increased in

colder months. The findings of elevated thermogenic

capacity, indicated by the enhanced NST, is further sup-

ported by the other biochemical markers examined in the

present study, including the MP content, the COX activity

and UCP1 content, which is in agreement with the previous

studies in Plateau pikas (Wang et al. 2006b), root voles

(Wang et al. 2006a), Brandt’s voles (Li and Wang 2005a),

golden spiny mice (Acomys russatus) (Kronfeld-Schor et al.

2000), and tree shrews (Tupaia belaneri) (Li et al. 2001).

Generally, cold-induced NST is activated by the sym-

pathetic nervous system but is modulated by THs (Lowell

and Spiegelman 2000). 3,5,30-triiodo-l-thyronine (T3) is

the only active form of THs and its effects are mediated by

nuclear T3 receptors, which chiefly affect the transcription

of UCP1 (Cannon and Nedergaard 2004). In this study, our

results demonstrated that the T3 concentration in winter

was significantly higher than that in summer, which was

consistent with the seasonal changes in NST and UCP1.

Furthermore, correlation analysis showed that UCP1 pro-

tein contents and NST were positively correlated with T3

concentrations supporting that thyroid hormones are major

modulators of cold-induced NST (Silva 2006).

Seasonal changes in serum leptin levels

Serum leptin levels displayed seasonal fluctuations. Fur-

thermore, our results showed that changes in leptin

expression in response to seasonal acclimatization were

significant after the correction of the effect of body mass or

body fat, which implies that leptin serves as an indicator of

energy store, as well as a mediator of energy balance.

Energy intake in Maximowiczi’s voles increased signifi-

cantly in fall/winter, similar as that in Brandt’s voles (Li

and Wang 2005a) and root voles (Wang et al. 2006c).

Further experiments found that field voles acclimated

under short photoperiod had a high sensitivity in response

to exogenous leptin administration than those kept under

long photoperiod, and this increased sensitivity to leptin

may play a key role in their winter survival (Król and

Speakman 2007). Maximowiczi’s voles, as well as

Brandt’s voles, have food hoarding behavior for wintering.

Interestingly, despite the doubled energy intake consumed

from summer to winter, the voles’ digestibility slightly

decreased, which was consistent with that in the photope-

riodic acclimation. This transition of digestive physiology

in Maximowiczi’s voles could be the result of a balance

between the benefits of processing food through a digestive

system with specific attributes and the cost of maintaining

and carrying it (Liu and Wang 2007). The adjustment of

digestive efficiency to photoperiod or seasonal changes was

also found in field voles (Król et al. 2006b).

Leptin-modulated changes of energy expenditure have

been suggested to link to thermogenic activity of brown

adipose tissue, but the conclusion is controversial. It was

reported that leptin administration caused increases in

oxygen consumption and UCP1 gene expression in BAT of

rat and mice (Scarpace et al. 1997; Commins et al. 2001);

whereas Abelenda et al. (2003) showed that leptin

administration to cold-acclimated rats decreased UCP1

protein concentrations in BAT and reduced thermogenesis.

In addition, infusion of leptin has no effect on BAT UCP1

content in field voles and Brandt’s voles under chronic cold
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Table 2 The effects of

photoperiod on the RMR, NST,

energy intake in Maximowiczi’s

voles (Microtus maximowiczii)
acclimated to either long (LD,

light:dark, 16:8) or short

photoperiod (SD, 8:16)

Values are expressed as

mean ± SEM

0 day P 28 days P

LD SD LD SD

RMR (ml O2/h) 99.59 ± 5.34 101.20 ± 5.77 [0.05 102.10 ± 6.05 97.32 ± 6.58 [0.05

NST (ml O2/h) 190.17 ± 4.87 198.05 ± 5.26 [0.05 190.14 ± 7.05 222.05 ± 7.67 \0.05

DMI (g/day) 7.57 ± 0.66 8.94 ± 0.71 [0.05 7.43 ± 0.60 10.87 ± 0.65 \0.01

GEI (kJ/day) 132.15 ± 11.45 156.20 ± 12.37 [0.05 129.71 ± 10.55 189.88 ± 1.43 \0.01

DEI (kJ/day) 75.78 ± 9.57 94.76 ± 10.34 [0.05 80.31 ± 6.95 112.49 ± 7.53 \0.05

Digestibility (%) 57.31 ± 1.12 59.23 ± 3.57 [0.05 61.90 ± 0.68 59.07 ± 0.83 \0.05

282 J Comp Physiol B (2012) 182:275–285

123



exposure (Król et al. 2006a; Tang et al. 2009). In the

present study, no correlations between serum leptin and

UCP1 were found. Moreover, we have showed a negative

correlation between leptin concentration and UCP1 protein

contents in root voles and Brandt’s voles (Wang et al.

2006a, b; Li and Wang 2005a). Under cold exposure, the

increase in thermogenic capacity controlled by the sym-

pathetic nervous system may offset the modulation effect

of decreased serum leptin. That is to say, the anorectic and

thermogenic effects of leptin may be dissociated (Król

et al. 2006a). Another possibility is associated with the

sensitivity of leptin as mentioned above (Tang et al. 2009).

Our results also demonstrated that serum leptin levels of

Maximowiczi’s voles are negatively correlated with RMR,

similar results found in the lactating voles (Zhang and

Wang 2007) and insectivorous bats (Eptesicus fuscus)

(Kunz et al. 1999) suggest that leptin might be involved in

the regulation of RMR.

Roles of photoperiod in seasonal changes of body mass,

thermogenesis, and serum hormones

Several small rodents have been reported to show reduction

in body mass and increase in thermogenesis in SD condi-

tions. This notion is supported by our data from the present

study showing that LD voles displayed a steady increase in

body mass whereas SD voles showed no changes in their

body mass over the course of acclimation. BAT is the main

site of NST production in small mammals (Foster and

Frydman 1979). In our present study, although no differ-

ences in absolute BAT mass were found between SD and

LD voles, NST was significantly elevated in SD voles.

Changes of photoperiod affect seasonal adjustments of

energy budgets in many small mammals (Bartness et al.

1989; Haim 1996; Powell et al. 2002). Short photoperiod

induced the increase of energy intake in Macedonian mice

(Mus macedonicus) (Haim et al. 1999), golden spiny mice

(Acomy russatus) (Haim et al. 1994), and Levant voles

(Microtus guentheri) (Banin et al. 1994). Our data also

showed that energy intake in SD voles (kept at *21�C)

was greatly elevated, similar to the findings under natural

ambient temperature, revealing that SD alone was effective

to induce seasonal acclimatization in this species. SD voles

showed relatively higher serum T3 levels but lower serum

leptin levels compared with LD voles, indicating that these

two kinds of hormones were potentially involved in the

regulation of SD-induced energy balance in this species.

We need to point out that in our experiment the short

day exposure was only last about 4 weeks and this may

devaluate our results. For photoperiod acclimation, usually

short day acclimation requires 8–10 weeks for the animals

to complete the changes in physiology (Bartness and

Goldman 1989). We should also pay attention to the syn-

chronization of seasonal changes, e.g., in Siberian ham-

sters, reproductive organs are reduced first, then body

mass, and then the last event is the occurrence of daily

torpor (Heldmaier and Lynch 1986).

Nonhibernating small mammals, which survive in the

cold seasons and/or cold regions, have presumably devel-

oped several anatomical, behavioral and physiological

strategies to enhance their survival (Wang and Wang

1996). In the present study, Maximowiczi’s voles showed

an increase in energy intake and thermogenesis in associ-

ation with the decreases in body mass, body fat mass and

serum leptin levels in winter and/or under winter (SD)

conditions. Although Maximowiczi’s voles display similar

changes with the well-characterized seasonal rodent spe-

cies such as field voles and Siberian hamsters in body mass

and body fat mass during cold season, but their energy

intake patterns are species-specific.

Table 3 Thermogenic

parameters and body

composition in Maximowiczi’s

voles (Microtus maximowiczii)
acclimated to either long

(LD, light:dark, 16:8) or short

photoperiod (SD, 8:16)

Values are expressed as

mean ± SEM

Parameters LD SD P

Sample size 7 6

Initial body mass (g) 28.9 ± 2.4 29.7 ± 2.7 [0.05

Final body mass (g) 33.91 ± 2.83 27.08 ± 1.34 0.064

Wet carcass mass (g) 24.95 ± 2.31 18.93 ± 1.19 [0.05

Dry carcass mass (g) 11.20 ± 1.23 7.95 ± 0.89 [0.05

Body fat mass (g) 4.55 ± 0.66 2.76 ± 0.69 [0.05

Body fat content (%) 39.97 ± 2.13 32.63 ± 4.00 [0.05

Mass out of carcass (g) 8.97 ± 0.68 8.15 ± 0.31 [0.05

BAT mass (g) 0.085 ± 0.011 0.072 ± 0.019 [0.05

BAT MP (mg/g BAT) 7.19 ± 0.86 7.36 ± 1.41 [0.05

COX activity (nmol O2/min/g BAT) 7,900 ± 570.34 10,435.29 ± 543.21 \0.05

Serum T3 (ng/ml) 0.68 ± 0.1 1.04 ± 0.1 \0.05

Serum T4 (ng/ml) 24.48 ± 3.27 34.76 ± 2.03 \0.05

Serum leptin (RU) 7.55 ± 1.85 2.98 ± 0.96 \0.05
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