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Abstract

Therearemore than100speciesofAmericandidelphidmarsupials (opossumsandmouse opossums). Limitedgenomic resources for

didelphids exists, with only two publicly available genome assemblies compared with dozens in the case of their Australasian

counterparts. This discrepancy impedes evolutionary and ecological research. To address this gap, we assembled a high-quality

chromosome-level genome of the agile gracile mouse opossum (Gracilinanus agilis) using a combination of stLFR sequencing,

polishing with mate-pair data, and anchoring onto pseudochromosomes usingHi-C. This species employs a rare life-history strategy,

semelparity, and all G. agilis males and most females die at the end of their first breeding season after succumbing to stress and

exhaustion. The 3.7-Gb chromosome-level assembly, with 92.6% anchored onto pseudochromosomes, has a scaffold N50 of

683.5 MbandacontigN50of56.9 kb.Thegenomeassembly showshighcompleteness,withamammalianBUSCOscoreof88.1%.

Around 49.7% of the genome contains repetitive elements. Gene annotation yielded 24,425 genes, of which 83.9% were func-

tionally annotated. The G. agilis genome is an important resource for future studies of marsupial biology, evolution, and

conservation.
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Introduction

Living marsupials fall within seven orders spread unevenly

across the Americas and Australasia (Nilsson et al. 2010;

Kumar et al. 2017). Dozens of Australasian marsupials have

been genetically sequenced or are forthcoming (reviewed in

Deakin and O’Neill [2020]), but few American marsupials

have been sequenced. Indeed, of the �100 species of didel-

phids (opossums and mouse opossums) (Ast�ua 2015; Faurby

et al. 2018) (supplementary fig. 1, Supplementary Material

online), only two genomes are publicly available: the gray

short-tailed opossum (Monodelphis domestica) (Mikkelsen

et al. 2007) and the Virginia opossum (Didelphis virginiana)

(Dudchenko et al. 2018).

At least three Australian marsupial genera are character-

ized by a semelparous reproductive strategy where all males

of certain species or populations die at the end of their first

breeding season after succumbing to stress and exhaustion

(Baker and Dickman 2018; Collett et al. 2018; Mutton et al.

2019). In a small number of didelphids, both sexes are

reported to be semelparous in four species of two tribes (three

in Thylamyini and one in Marmosini) in the subfamily

Didelphinae (Leiner et al. 2008; de Andreazzi et al. 2011;

Baladr�on et al. 2012; Lopes and Leiner 2015; Puida and

Paglia 2015; Hernandez et al. 2018; Zangrandi 2018;

Albanese et al. 2021).

The genetic basis of marsupial semelparity remains largely

unknown, and to understand it we must catalogue various

genome sequences across the life-history continuum. Here,

we contribute to this effort by presenting a chromosome-level

genome assembly of the agile gracile mouse opossum

(Gracilinanus agilis)—a small, nocturnal, insectivore–omnivore

species inhabiting the tropical savannas of central South

America (Gardner 2008).

Results and Discussion

The G. agilis genome was obtained by stLFR sequencing, pol-

ishing with mate-pair data, and anchoring onto seven pseu-

dochromosomes (2n¼ 14) using Hi-C (fig. 1a and

supplementary table 1 and fig. 2, Supplementary Material

online). The final assembly size (3.7 Gb; including unanchored

scaffolds) and GC content (37.87%) (table 1 and supplemen-

tary fig. 3, Supplementary Material online) are similar to the

two other sequenced South American marsupial species—

3.61 Gb and 37.82% for M. domestica and 3.42 Gb and

37.36% for the D. virginiana, respectively. The G. agilis as-

sembly has a contig N50 of 56.9 kb, a scaffold N50 of

683.5 Mb (table 1), and the assigned chromosomes are highly

homologous to M. domestica assembly MonDom5 (contig

N50 108.0 kb; scaffold N50 Mb 528.0 Mb) (fig. 1b). The G.

agilis genome is composed of 49.7% repeat elements, includ-

ing 42.3% LINEs, 12.1% LTRs, and 12.0% SINEs (table 1 and

supplementary tables 2 and 3, Supplementary Material on-

line). Out of 9,226 mammalian BUSCO genes, we recovered

7,889 (88.10%) (table 1). We also obtained a complete

16,336 bp mitochondrial genome from the mate-pair data

(supplementary fig. 4, Supplementary Material online).

Conclusions

In this work, we report the genome assembly of G. agilis—the

third from the more than 100 species of South American

marsupials. We hope that our current efforts, which

employed the relatively inexpensive (�USD 1,000 per sample)

stLFR sequencing technology (Stiller and Zhang 2019), will

provide an impetus for a wave of genomics research in

South America. Indeed, a consortium to facilitate such work

will be delineated in an upcoming manuscript (Fisher et al., in

preparation). Gracilinanus agilis is also one of a handful of

South American marsupials that exhibits semelparity and, to-

gether with recent genomes of semelparous Australian rela-

tives of genus Antechinus (Brandies et al. 2020; Tian et al.

2021), provides the first of many required to unravel a com-

plex life-history strategy. Taken together, the chromosome-

level G. agilis genome presented in this report should provide

a valuable resource for a wide range of research on

marsupials.

Materials and Methods

DNA Sequencing

An adult male agile gracile mouse opossum (Gracilinanus agi-

lis; LMUSP501) was sampled in Estaç~ao Ecol�ogica do Panga,

Uberlândia, MG, Brazil (19� 90 S, 48� 230W) in May 2019.

Kidney and liver tissues were sequenced by single-tube

Long Fragment Read (stLFR) (Fan et al. 2019; Wang et al.

2019) and short-insert library whole-genome sequencing on

the BGISEQ-500 platform (2� 100 bp reads), respectively. A

Significance

There is currently a distinct lack of genome assemblies of more than 100 species of American marsupials, with only

two assemblies available, compared with dozens for Australasian marsupials. Here, we present a chromosome-level

assembly of the agile gracile mouse opossum (Gracilinanus agilis). This species exhibits semelparity—a rare life-history

strategy, where all G. agilis males and most females die at the end of their first breeding season after succumbing to

stress and exhaustion. This genome will contribute to research on marsupial biology, evolution, and conservation.
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total of �358 Gb (�100�) stLFR reads were generated.

SOAPnuke v1.5 (Chen et al. 2018) was used to filter out

low-quality reads, PCR duplicates, and adaptors. Next,

�264 Gb filtered (clean) data were assembled, using

Supernova v2.1.1 (Weisenfeld et al. 2017) and the

SOAPdenovo2 module Gapcloser v1.10 (Luo et al. 2012),

and short-insert library WGS data (�50�) were used to close

gaps. Genome size was estimated by k-mer analysis of 100 bp

paired-end WGS reads by GCE (Genomic Charactor

Estimator) v1.0.0 (Marcais and Kingsford 2011) (supplemen-

tary fig. 5, Supplementary Material online). Liver Hi-C libraries

were sequenced on the BGISEQ-500 platform and quality

controlled using HiC-Pro v2.8.0_devel (Servant et al. 2015),

resulting in �29 Gb uniquely aligned read pairs. Reads vali-

dated by HiC-Pro were used to scaffold contigs into seven

chromosome clusters using the 3D-DNA v1.12 (Dudchenko

et al. 2017). The assembly was further improved by interactive

correction using Juicebox v1.11.08 (Durand et al. 2016;

Dudchenko et al. 2018). Assembly quality was assessed using

BUSCO (Benchmarking Universal Single-Copy Orthologs)

v5.0.0_cv1 (Seppey et al. 2019) (mammalia_odb10 gene set).

We also generated the complete mitochondrial genome of

G. agilis from 100 bp WGS reads (see supplementary meth-

ods, Supplementary Material online).

Genome Annotation

We identified repetitive elements by integrating homology

and de novo prediction data. Protein-coding genes were an-

notated using homology-based prediction, de novo predic-

tion, and RNA-seq-assisted (generated from kidney, skeletal

muscle, and liver from two male individuals) prediction meth-

ods. For details, see supplementary methods, Supplementary

Material online.

Supplementary Material

Supplementary data are available at Genome Biology and

Evolution online.
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FIG. 1.—Overview of the Gracilinanus agilis genome assembly. (a) Assembly circos plot. The outermost segment represents chromosome sequences,
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(chr1–chr7) and the gray short-tailed opossum (Monodelphis domestica) (NC_008801.1-NC_008809.1). Aligned using LASTZ. The synteny blocks are linked

using lines colored in accordance with the G. agilis chromosomes. Aligned blocks with length shorter than 10 kb are not shown. Chr7 in G. agilis corresponds
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