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a b s t r a c t 

The cell-fate induction based on the saddle-node bifurcation is undoubtedly a very important concept in 

developmental biology, which provides a possible mechanism to explain the intrinsic irreversibility in the 

developmental process. In this paper, the effect of a colored noise, which is associated with the inductive 

stimulus, on the saddle-node landscape of cell-fate induction is investigated, especially, the effect of the 

change of correlation time of colored noise on cell-fate induction. The main results show clearly that 

the change of correlation time of colored noise could induce the transitions of the system. This implies 

that the colored noise associated with inductive stimulus may have a profound effect on the saddle-node 

bifurcation landscape of cell-fate induction. This will also help us to understand more deeply the role of 

cell-fate induction in developmental biology. 

© 2019 Elsevier Ltd. All rights reserved. 
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. Introduction 

Waddington (1957) ’s epigenetic landscape is probably the most

amous and most powerful metaphor in the developmental biol-

gy, which depicts how a cell progress form an undifferentiated

tate to one of a number of discrete, distinct, differentiated cell

ates during development (see also Ferrell, 2012 ). Recently, un-

ike Waddington’s pattern, Ferrell (2012) proposed the concept of

ell-fate induction, which possess an intrinsic irreversibility that

s missing from Waddington’s picture ( Waddington, 1957; Zheng

t al., 2018 ). According to Ferrell (2012) , the concept of cell-fate

nduction means that a cell or a group of cells produces an in-

uctive stimulus that causes another cell to adopt a new pheno-

ype. Ferrell (2012) pointed out that the cell-fate introduction has

wo key features: ( i ) the inductive stimulus need not be main-

ained indefinitely; after some commitment point, the stimulus

ay be withdrawn and the cell will continue with its induced de-

elopment program; and ( ii ) the induction results in an all-or-none

witch between qualitatively distinct cell fates. Some studies have

hown that the concept of cell-fate induction should be reasonable
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 Yamamoto, 1994; Smith, 1995; Ferrell and Machleder, 1998; Fer-

ell et al., 1999; Sternberg, 2005; Shi et al., 2015; Chen et al., 2018 ).

ecently, a study on the determination of Drosophila ovarian

ermline stem cell fate also provided strong experimental evi-

ence, in which there is a feedback loop with bistable regulation

nduced by an external BMP signal ( Xia et al., 2012 ). 

In order to show clearly the concept of cell-fate induction,

errell (2012) used a simple single-variable model with positive

eedback regulation to characterize the dynamic properties of cell-

ate induction. In fact, this simple theoretical model has been in-

estigated by many authors ( Smolen et al., 1998; Xiong and Ferrell,

003; Liu and Jia, 2004; Smits et al., 2006; Bennett et al., 2007;

heng et al., 2011; Ferrell, 2012 ), but Ferrell mainly focused on

ow the inductive stimulus affects the dynamic characteristics of

he system. Based on the potential surface of this system, he thinks

hat the cell commits to the induced fate because the valley corre-

ponding to the uninduced fate disappears through a saddle-node

ifurcation, so the saddlenode landscape resulting in the cell-fate

nduction should be different from Waddingtons epigenetic land-

cape ( Waddington, 1957 ). On the other hand, Ferrell (2012) also

ointed out that the pitchfork bifurcation based on the lateral in-

ibition should be one possible important mechanism that can

ead to cell-fate determination and used a simple theoretical model

o reveal the dynamical properties of pitchfork bifurcation based

n the lateral inhibition. However, he emphasized that the key of

itchfork bifurcation is that the system is symmetrical and any

https://doi.org/10.1016/j.jtbi.2019.110018
http://www.ScienceDirect.com
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Fig. 1. The scheme of a single gene network associated with the concept of cell-fate 

induction ( Ferrell, 2012 ). 
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imperfection in the symmetry will change the pitchfork bifurca-

tion into a saddle-node bifurcation ( Momiji and Monk, 2009; Fer-

rell, 2012 ). Therefore, in this study, we mainly focus our attention

on the concept of cell-fate induction based on the saddle-node bi-

furcation. 

Since the stochastic fluctuations of environment cannot be

avoided ( May, 1973; Becskei and Serrano, 20 0 0; Elowitz and

Leibler, 20 0 0; Gardner et al., 20 0 0; Hasty et al., 20 0 0; 20 02; Ah-

mad and Henikoff, 2001; Elowitz et al., 2002; Lande et al., 2003;

Kaern et al., 2005; Raj and van Oudenaarden, 2008; Shi et al., 2015;

Chen et al., 2018 ), many studies have investigated the effect of en-

vironmental noise on gene expression and regulation ( Becskei and

Serrano, 20 0 0; Elowitz and Leibler, 20 0 0; Gardner et al., 20 0 0;

Hasty et al., 20 0 0; 20 02; Ahmad and Henikoff, 20 01; Liu and Jia,

20 04; Kaern et al., 20 05; Xu and Tao, 20 06; Raj and van Oude-

naarden, 2008; Zheng et al., 2011 ). For example, some experimen-

tal studies based on the single gene networks with positive feed-

back regulation showed that the basal synthesis rate and degra-

dation rate not only depend on the biochemical reactions, mu-

tations, and concentrations of other proteins but also fluctuate

randomly ( Becskei and Serrano, 20 0 0; Elowitz and Leibler, 20 0 0;

Gardner et al., 20 0 0; Hasty et al., 20 0 0; Ahmad and Henikoff,

2001 ). More recently, a study investigated the effects of two time-

correlated noises on the saddle-node landscape of cell-fate induc-

tion (i.e., a single gene network with positive feedback regulation)

( Zheng et al., 2018 ). The main results of this study show that the

time-correlated noises may not only lead to the change (or disap-

pearance) of saddle-node bifurcation of cell-fate induction but also

lead to the occurrence of the reentrance phenomena. In this study,

to reveal more clearly how the correlation time of colored noise af-

fects the stochastic dynamics of cell-fate induction, we still mainly

focus on a single gene network with positive feedback regulation,

where the basal synthesis rate (or the inductive stimulus) is as-

sumed to be a random variable associated with a colored noise.

The results of this study will help us better understand the role of

cell-fate induction in developmental biology. 

2. Model and analysis 

Following Ferrell (2012) , we consider also a simple one-variable

auto-positive feedback regulation model (the scheme of this model

is shown in Fig. 1 ), which is given by 

dx 

dt 
= 

αx n 

k n + x n 
+ α0 − γ x (1)

where x represents the concentration of protein X, the term

αx n 
/(

k n + x n 
)

+ α0 denotes the synthesis rate of X, and the pa-
ameter γ is the degradation rate of X. For the synthesis rate, ( i )

he function αx n 
/(

k n + x n 
)

is called the Hill-type function, where

represents the maximum rate of feedback-dependent synthesis

f X, k is the concentration of X when the feedback synthesis rate

s half maximal, and n is called the Hill coefficient; and ( ii ) the pa-

ameter α0 is the basal synthesis rate and it is also called the in-

uctive stimulus in Ferrell’s schematic view of cell-fate induction

 Ferrell, 2012; Zheng et al., 2018 ). 

As shown in Introduction, the dynamical properties of

q. (1) have been investigated by many authors ( Smolen et al.,

998; Xiong and Ferrell, 2003; Liu and Jia, 2004; Smits et al., 2006;

ennett et al., 2007; Zheng et al., 2011; Ferrell, 2012 ), and one of

he most important theoretical results of this model is to provide

 possible mechanism for the bistable regulation of gene expres-

ion ( Ferrell, 2012 ). Especially, Ferrell (2012) used this model to

evelop the concept of cell-fate induction. Notice that the potential

f Eq. (1) , denoted by �( x ), is �(x ) = − ∫ [
αx n 

/(
k n + x n 

)
+ α0 −

x 
]
dx . Then, as shown by Ferrell (2012) , we can easily see how the

otential surface changes as α0 changes. Specifically, for given pa-

ameters α, k, n (with n > 1), and γ , there exist two critical values

f α0 , denoted by α′ 
0 

and α′′ 
0 

, respectively, with α′ 
0 

< α′′ 
0 
, such that

 i ) only one equilibrium exists and it is globally asymptotically sta-

le if α0 < α′ 
0 

or α0 > α′′ , and ( ii ) if α0 is in the interval α′ 
0 

< α0 <′′ 
0 
, then three equilibria exist, denoted by x ∗

1 
, x ∗

2 
, and x ∗

3 
, respec-

ively, with x ∗1 < x ∗2 < x ∗3 , and both x ∗1 and x ∗3 are locally asymptot-

cally stable and x ∗2 is an unstable saddle point ( Ferrell, 2012 ). So,

or given α, k, n and γ , 
(
α′ 

0 
, α′′ 

0 

)
can be called the bistable interval

f α0 for the deterministic dynamics Eq. (1) . In mathematics, this

s also called the saddle-node bifurcation ( Ferrell, 2012 ). 

We now mainly focus our attention on how the stochastic fluc-

uation of the inductive stimulus influences the process of cell-fate

nduction. Let α0 be a positive random variable associated with a

olored noise, which is defined as α0 (t) = α0 + Q(t) ≥ 0 , where α0 

s a positive constant and Q ( t ) is a colored noise with 

〈
Q(t) 

〉
= 0

nd 

 

Q (t) Q (t ′ ) 
〉 

= 

D 

τ
exp 

[
−| t − t ′ | 

τ

]
(2)

here τ is the correlation time and D is the noise strength ( Castro

t al., 1995; Jia and Li, 1997; Gardiner, 2009; Kamenev, 2011;

panio et al., 2017 ). Then, the stochastic differential equation (or

he Langevin equation) corresponding to Eq. (1) can be given by 

dx 

dt 
= F (x ) + Q(t) (3)

here 

 (x ) = 

αx n 

k n + x n 
+ α0 − γ x. (4)

herefore, when we consider only the role of the inductive stimu-

us, Q ( t ) is only an additive colored noise of Eq. (3) . 

Let φ( x, t ) denote the probability density distribution that the

ystem state is x at time t . Then, based on the approximation of

mall τ ( Sancho et al., 1982; Hu, 1994; Jia and Li, 1997; Gardiner,

009 ), the probability density distribution φ( x, t ) obeys the Fokker-

lanck equation 

∂φ(x, t) 

∂t 
= − ∂ 

∂x 
F (x ) φ(x, t) + D 

∂ 2 

∂x 2 
h (x ) φ(x, t) (5)

here 

 (x ) = 1 + τF ′ (x ) (6)

ith 

 

′ (x ) = αnk n x n −1 
/(

k n + x n 
)

2 − γ (7)

 Sancho et al., 1982; Hu, 1994; Jia and Li, 1997; Gardiner, 2009 ).

hen we have that h ( x ) > 0 for all possible x ≥ 0 if τ < 1/ γ . 
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Fig. 2. The phase transitions due to the change of α0 in the case with τ = 0 . For given parameters α = 0 . 55 , k = 1 , n = 5 and γ = 0 . 5 , panel ( a ) shows how the change of 

α0 determines the number of intersections of functions H 1 ( x ) and H 2 ( x ); and panel ( b ) shows how the increase of α0 leads to the change of the number of potential wells 

in the potential function �( x ). 

Fig. 3. The phase transitions due to the change of τ . Similarly, for given parameters α = 0 . 55 , k = 1 , n = 5 and γ = 0 . 5 , panel ( a ) shows that when α0 < α′ 
0 , the increase 

of τ will induce the phase transitions from monostable to bistable; panel ( b ) shows that when α0 is in the interval α′ 
0 < α0 < α′′ 

0 , the change of τ cannot induce the phase 

transitions, the system is always kept to be bistable; and panel ( c ) shows that when α0 > α′′ 
0 , the increase of τ will also induce the phase transitions from monostable to 

bistable. 
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The stationary distribution of Eq. (5) , denoted by φst ( x ), can be

iven by φst (x ) = N e −�(x ) , where N is a normalized constant and

he potential function is 

(x ) = ln Dh (x ) −
∫ x F (s ) 

Dh (s ) 
ds (8) 

 Risken, 1992 ). Note also that 

d�(x ) 

dx 
= 

Dh 

′ (x ) − F (x ) 

Dh (x ) 
(9) 

here h ′ (x ) = ταnk n x n −2 
(
(n − 1) k n − (n + 1) x n 

)/(
k n + x n 

)
3 . Thus,

he solution of d �(x ) /d x = 0 is also equivalent to the solution of

quation 

h 

′ (x ) − F (x ) = 0 

⇒ Dταnk n x n −2 (n − 1) k n − (n + 1) x n 

(k n + x n ) 3 

− αx n 

k n + x n 
− α0 + γ x = 0 . (10) 
or convenience, let 

 1 (x ) = 

αx n 

k n + x n 
+ α0 − Dταnk n x n −2 (n − 1) k n − (n + 1) x n 

(k n + x n ) 3 
, 

 2 (x ) = γ x. (11) 

hen, the solutions of Eq. (10) must correspond to the intersections

f H 1 ( x ) and H 2 ( x ). 

It is easy to see that for the situation with τ = 0 , the solu-

ions of Eq. (10) exactly matches the equilibria of the determin-

stic dynamics Eq. (1) , i.e., for given parameters α, k, n and γ
where, as an example, we take α = 0 . 55 , k = 1 , n = 5 and γ =
 . 5 Ferrell, 2012 ), there exist two critical values of α0 , denoted

y α′ 
0 

and α′′ 
0 
, respectively, with α′ 

0 
< α′′ 

0 
(where α′ 

0 
= 0 . 207 and

′′ 
0 = 0 . 271 ), such that Eq. (10) has only one solution if α0 < α′ 

0 
r α0 > α′′ 

0 
, and Eq. (10) has three solutions if α0 is in the in-

erval α′ 
0 

< α0 < α′′ 
0 

( Fig. 2 a). This also implies that the potential

( x ) has only one potential well if α0 < α′ 
0 , or α0 > α′′ 

0 , and has

wo potential wells if α0 is in the interval α′ 
0 

< α0 < α′′ 
0 

( Fig. 2 b).

herefore, the potential function given by Eq. (8) has the same

roperties as the potential of deterministic dynamics Eq. (1) if

= 0 (see also Ferrell, 2012 ). Obviously, these results also show
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Fig. 4. Stochastic simulation results and stationary distributions corresponding to the theoretical predictions in Figs. 2 and 3 . The upper and lower parts of all the panels 

show the simulation results and stationary distributions corresponding to the theoretical predictions in Fig. 3 for the case τ = 0 and τ = 1 . 8 , respectively. 
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clearly that if τ = 0 , then the solutions of Eq. (10) must be inde-

pendent of the noise strength D . 

On the other hand, for the situation with τ > 0, it is also easy to

see that lim 

x →∞ 

H 1 (x ) = α + α0 and lim 

x →∞ 

H 2 (x ) = ∞ . Therefore, H 1 ( x )

and H 2 ( x ) have at least one intersection. On the other hand, we

can see that for all possible τ ∈ (0, 1/ γ ), H 1 ( x ) must pass through

a fixed point P = ( ̂  x , H 1 ( ̂  x )) , where ˆ x = 

(
(n − 1) k n 

/
(n + 1) 

)
1 /n and

H 1 ( ̂  x ) = α(n − 1) / 2 n + α0 , and that ∂ H 1 ( x )/ ∂ τ < 0 if x < ˆ x and,

conversely, ∂ H 1 ( x )/ ∂ τ > 0 if x > ˆ x . These properties imply that the

change of τ may induce the transitions. To show this, the numeri-

cal analysis of Eq. (10) (where we still take α = 0 . 55 , k = 1 , n = 5

and γ = 0 . 5 , and take D = 0 . 015 ) shows that ( i ) when α0 < α′ 
0

(where α′ 
0 

= 0 . 207 ), with the increase of τ (with τ < 1/ γ ), the

system will transmit from monostable state to bistable state, or

the system will undergo a succession of two transitions, monos-

table → bistable ( Fig. 3 a); ( ii ) similarly, when α0 > α′′ 
0 

(where

α′′ 
0 = 0 . 271 ), with the increase of correlation time τ , the system

will also transmit from monostable state to bistable state, or the

system will also undergo a succession of two transitions, monos-

table → bistable ( Fig. 3 c); and ( iii ) when α0 is in the interval

α′ 
0 

< α0 < α′′ 
0 
, the system is always in bistable sate for all possible

τ , that is the change of τ cannot induce the transitions ( Fig. 3 b).

In fact, we can see also that when we assume τ to be a constant

with τ ∈ (0, 1/ γ ), the change of noise strength D can also result in

the similar results. 

Furthermore, the stochastic simulations corresponding to the

theoretical predictions in Fig. 3 also show clearly that the the-

oretical predictions are correct, i.e., the stochastic simulation re-

sults match the stationary distribution φst (x ) = N e −�(x ) well (see

Fig. 4 ). Therefore, the theoretical analysis suggests that when the

deterministic dynamics of cell-fate induction is monostable, the

correlation time of the colored noise associated with the inductive

stimulus is also able to lead to the saddle-node bifurcation land-

scape of cell-fate induction. 

3. Conclusion 

As we pointed out in Introduction, the cell-fate induction based

on the saddle-node bifurcation is undoubtedly a very important

concept in developmental biology. It provides a possible mech-

anism to explain the intrinsic irreversibility in the developmen-

tal process that is missing from Waddingtons epigenetic landscape
 Waddington, 1957 ). In this study, based on Ferrell (2012) ’s model

f cell-fate induction (i.e., Eq. (1) ), the effect of colored noise,

hich is associated with the inductive stimulus, on the saddle-

ode landscape of cell-fate induction is investigated. In our anal-

sis, since we mainly focus on the effect of the inductive stimulus

n the cell-fate induction, we only assume that the basal synthesis

ate ( α0 ) in Eq. (1) is a positive random variable associated with

 colored noise. In spite of this, our analysis still provides a possi-

le mechanism to reveal the role of inductive stimulus associates

olored noise in cell-fate induction, especially, how the correlation

ime of colored noise influences the saddle-node bifurcation land-

cape of cell-fate induction. 

First, it is easy to see that for the deterministic dynamics

q. (1) , there must exist two values of α0 , denoted by α′ 
0 and α′′ 

0 ,

espectively, with α′ 
0 

< α′′ 
0 
, such that ( i ) if α0 < α′ 

0 
(or α0 > α′′ 

0 
),

he system has only one equilibrium, denoted by x ∗, and it is glob-

lly asymptotically stable (i.e., monostable state); and ( ii ) if α0 is

n the interval α′ 
0 

< α0 < α′′ 
0 
, then the system has three equilib-

ia, denoted by x ∗
1 
, x ∗

2 
and x ∗

3 
, respectively, with x ∗

1 
< x ∗

2 
< x ∗

3 
, and

oth x ∗1 and x ∗3 are locally asymptotically stable and x ∗2 is unsta-

le (i.e., bistable state). This is why Ferrell (2012) emphasized that

he change of inductive stimulus ( α0 ) plays a very important role

n cell-fate induction. Second, when we assume that the inductive

timulus is a positive random variable associated with a colored

oise (i.e., α0 = α0 + Q(t) ≥ 0 , where Q ( t ) is a colored noise with

orrelation time τ and noise strength D ) (see Eq. (2) ), we found

hat ( i ) if α0 < α′ 
0 (or α0 > α′′ 

0 ), then, with the increase of corre-

ation time τ , the system will transmit from monostable state to

istable state, or the system will undergo a succession of two tran-

itions, monostable → bistable ; and ( ii ) if α0 is in the interval
′ 
0 

< α0 < α′′ 
0 
, then the system is always in bistable state for all

ossible τ , that is the change of τ cannot induce the transitions.

ll of these results imply that the colored noise associated with

nductive stimulus may have a profound effect on the saddle-node

ifurcation landscape of cell-fate induction. 

Finally, we would like to say that since we here mainly focus

n how the random inductive stimulus associated with a colored

oise influences the saddle-node bifurcation landscape of cell-fate

nduction. So, the multiplicative noises related to the Hill-type

unction and protein degradation rate of protein are not consid-

red in this study. However, this does not imply that the im-

ortance of multiplicative noises in cell-fate induction could be
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gnored in more general situation. Some studies have shown that

hen a multiplicative noise source is introduced into a system

 Horsthemke and Lefever, 1984; Mikhailov and Loskutov, 2012 ;

tc.), it may give rise to a lot of interesting dynamical phenom-

na, such as the transition phenomenon ( Barbera and Spagnolo,

002; Fiasconaro et al., 2004; Valenti et al., 2004; Chichigina et al.,

011; Zheng et al., 2011; 2018 ) and the noise enhanced stabil-

ty phenomenon ( Horsthemke and Lefever, 1984; Mantegna and

pagnolo, 1996; Fiasconaro and Spagnolo, 2009; Spagnolo et al.,

004; Mikhailov and Loskutov, 2012 ). As an example, we also in-

estigated the effects of two time-correlated noises, which are re-

ated to the inductive stimulus and protein degradation rate, re-

pectively, on the saddle-node bifurcation landscape of cell-fate in-

uction ( Zheng et al., 2018 ). Therefore, the unique biological sig-

ificance of multiplicative noise for cell-fate induction should be

onsidered in the future. 
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