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Abstract
Body size is directly linked to key life history traits such as growth, fecundity, and sur-
vivorship. Identifying the causes of body size variation is a critical task in ecological 
and evolutionary research. Body size variation along altitudinal gradients has received 
considerable attention; however, the underlying mechanisms are poorly understood. 
Here, we compared the growth rate and age structure of toad-headed lizards 
(Phrynocephalus vlangalii) from two populations found at different elevations in the 
Qinghai-Tibetan Plateau. We used mark-recapture and skeletochronological analysis 
to identify the potential proximate causes of altitudinal variation in body size. Lizards 
from the high-elevation site had higher growth rates and attained slightly larger adult 
body sizes than lizards from the low-elevation site. However, newborns produced by 
high-elevation females were smaller than those by low-elevation females. Von 
Bertalanffy growth estimates predicted high-elevation individuals would reach sexual 
maturity at an earlier age and have a lower mean age than low-elevation individuals. 
Relatively lower mean age for the high-elevation population was confirmed using the 
skeletochronological analysis. These results support the prediction that a larger adult 
body size of high-elevation P. vlangalii results from higher growth rates, associated 
with higher resource availability.
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1  | INTRODUCTION

Body size is a fundamental life history trait influencing nearly every 
aspect of an organism’s behavior and physiology and covaries with 
such fitness-related traits as reproductive performance, competitive 
ability, and predator vulnerability (Peters, 1986; Roy, 2008; Sibly & 
Brown, 2007). As a central issue in ecological and evolutionary re-
search (Angilletta, Niewiarowski, Dunham, Leache, & Porter, 2004; 
Peters, 1986; Stearns, 1992), numerous studies have been conducted 
to try to identify both proximate and ultimate causes of intra-  and 
interspecies variation in body size over recent decades (Ashton 

& Feldman, 2003; Horváthová et al., 2013; Ryan & Smith, 2013; 
Valenzuela-Sánchez, Cunningham, & Soto-Azat, 2015).

Body size patterns for endotherms have been subject to gen-
eralizations such as Bergmann’s rule, which predicts that individu-
als in colder regions tend to be larger than those in warmer regions 
(Blackburn, Gaston, & Loder, 1999). However, ectotherms in colder re-
gions may be larger in some species, but smaller in others (e.g., Ashton 
& Feldman, 2003; Du, Ji, Zhang, Xu, & Shine, 2005; Forsman & Shine, 
1995; Sears & Angilletta, 2004). The proximate mechanisms underly-
ing this body size variation are complex (Angilletta, Niewiarowski et al., 
2004; Sears & Angilletta, 2004). A larger body size may be a result of 
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the following ecological scenarios. If all else being equal, (1) a larger 
size at birth (Kesselring, Wheatley, & Marshall, 2012; Rius, Turon, Dias, 
& Marshall, 2010), (2) faster growth rate (Angilletta, Steury, & Sears, 
2004; Rowe, 1997), (3) longer duration of growth (delayed maturity; 
Angilletta, Niewiarowski et al., 2004; Horváthová et al., 2013), or (4) 
increased survivorship (~longevity) may lead to a larger adult body 
size in ectotherms with indeterminate growth (Morrison, Hero, & 
Browning, 2004; Norry & Loeschcke, 2002; Speakman, 2005).

Geographic variation in body size, along latitudinal gradients has 
been well documented in a variety of animals from insects to mam-
mals (Du, Warner, Langkilde, Robbins, & Shine, 2010; Hodkinson, 
2005; Huey, Gilchrist, Carlson, Berrigan, & Serra, 2000; Kivelä, 
Välimäki, Carrasco, Mäenpää, & Oksanen, 2011; Merilä, Laurila, 
Laugen, Räsänen, & Pahkala, 2000; Sand, Cederlund, & Danell, 1995; 
Sears & Angilletta, 2004; Stearns, 1992). However, variation along 
altitudinal gradients is not well studied, and the underlying mecha-
nisms are poorly understood (but see Sears & Angilletta, 2003; Iraeta, 
Monasterio, Salvador, & Díaz, 2006; Karl, Janowitz, & Fischer, 2008). 
Compared with the animals living at relatively warm low-elevation 
sites, high-elevation ectotherms are expected to be larger at sexual 
maturity following a negative temperature–size relationship (ecto-
therms usually grow slower but mature at a larger size at lower rearing 
temperatures, e.g., Angilletta & Dunham, 2003), which is the case in 
some species (Angilletta, Steury et al., 2004; Morrison & Hero, 2003; 
Pincheira-Donoso, Hodgson, & Tregenza, 2008; Walters & Hassall, 
2006). However, body size has been found to decrease with increased 
elevation in other species, which has been linked to resource limita-
tions, and thus restricted growth (Chown & Klok, 2003; Hodkinson, 
2005).

The Qinghai toad-headed lizard (Phrynocephalus vlangalii), which 
is widely distributed in the Qinghai-Tibetan Plateau with an ele-
vation range from 2,000 m to 4,500 m, is an excellent model spe-
cies for studying altitudinal patterns of life history traits in reptiles. 
Altitudinal variation in body size of this species has been reported 
in previous studies; however, the results of these studies remain 
controversial. Jin, Liu, and Li (2007) found a negative relationship 
between body size of adult P. vlangalii and elevation, but a recent 
study showed that the females from high-elevation sites were sig-
nificantly larger than those from low-elevation sites (Li, Zhou, & Liu, 
2014). Despite the controversy in altitudinal pattern in body size, 
the underlying proximate causes of this altitudinal variation in body 
size remain elusive.

Here, we first compared the body size of P. vlangalii from two 
sites at different elevations (Maqu, 2,930 m elevation, hereafter the 
low-elevation site; Maduo, 4,250 m elevation, hereafter the high-
elevation site) in the northeast part of Qinghai-Tibetan Plateau. 
Then, we measured the size of newborns produced by wild-caught 
females, measured growth rate and determined age structure via 
mark-recapture experiments, and identified adult age by skele-
tochronological analysis in these two populations. We found that 
body size was slightly larger in the high-elevation population than 
in the low-elevation population. In order to identify the proximate 
causes of altitudinal variation in body size in this species, we tested 

the following predictions derived from the aforementioned hypoth-
eses using data on neonate size, growth rate, estimated age at ma-
turity, and age structure of adults, respectively. First, if neonate size 
determines adult body size, newborns would be larger in the high-
elevation population than the low-elevation population. Second, if 
a faster growth rate leads to larger adult body size, juvenile lizards 
would grow more rapidly in the high-elevation population than the 
low-elevation population. Third, if lizards grow to larger body size 
through delayed maturity, lizards from the high-elevation popula-
tion would have a longer duration of growth than the low-elevation 
population. Lastly, if increased survivorship (~longevity) leads to a 
larger adult body size, adult lizards would survive longer and would 
be older in the high-elevation population than the low-elevation 
population.

2  | MATERIALS AND METHODS

2.1 | Study species and areas

Phrynocephalus vlangalii is a small ground-dwelling viviparous agamid 
lizard (up to 80 mm snout-vent length, SVL) and typically found in 
open spaces among sparse vegetation in arid or semiarid regions of 
the Qinghai-Tibetan plateau. Many life history traits of this species 
show large amounts of geographic variation. Courtship occurs in May, 
and parturition occurs between mid-July and late August (Wu, Fu, 
Yue, & Qi, 2015). Females at low-elevation sites give birth earlier than 
those at high-elevation sites (Li et al., 2014). Offspring mass increases, 
but litter size and adult body size decrease with increasing elevation 
(Jin & Liu, 2007; Jin et al., 2007).

This study was conducted in a low-elevation site (Gansu Province, 
western China, 34°00′N, 102°04′E) and a high-elevation site (Qinghai 
Province, western China, 34°55′N, 98°12′E). Over a linear distance 
of 370 km, these two sites show distinct mean annual air tempera-
ture (low-elevation vs. high-elevation: 1.4°C vs. −1.7°C; paired-sample 
t test, t = 18.79, df = 11, p < .001, Cohen’s d = 0.38) and rainfall 
(550 mm vs. 379 mm, t = 3.62, df = 11, p < .01, Cohen’s d = 0.36; 
Figure 1). Toad-headed lizards are abundant in both study sites, and 
previous phylogenetic analysis has indicated that these two popula-
tions belong to a single lineage (Jin, Brown, & Liu, 2008).

2.2 | Mark-recapture experiments in the field

In mid-June (10th–18th) and late August (22nd–30th) of 2011 and 
2012, a study plot of 4,000 m2 in each site (80 × 50 m2) was visited 
four times. At each visit, active lizards were captured by hand when-
ever possible, weighed and measured for SVL, noting reproductive 
condition. The gender of each individual was determined by gently 
pressing on the tail base using thumb for the presence or absence of 
hemipenes. Each visit lasted approximately 1 week. A total of 1,096 
lizards (146 juveniles and 366 adults from the low-elevation, 213 
juveniles and 371 adults from the high-elevation) were captured 
between 2011 and 2012. Some juveniles (low-elevation: 58 in 2011 
and 75 individuals in 2012; high-elevation: 107 in 2011 and 130 
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individuals in 2012) and adults (low-elevation: 45 in 2011 and 64 
individuals in 2012; high-elevation: 34 in 2011 and 65 individuals in 
2012) were marked individually by toe-clipping upon first capture. 
Lizards were measured, checked for the marks, and released imme-
diately at their site of capture. A total of 132 lizards (low-elevation: 
11 juveniles and 9 adults in 2011, 19 juveniles and 17 adults in 
2012; high-elevation: 10 juveniles and 11 adults in 2011, 41 juve-
niles and 14 adults in 2012) were recaptured at least once during 
the mark-recapture experiment.

2.3 | Body size of newborns

In mid-July of 2011, 59 gravid females captured in the field (29 from 
the low-elevation and 30 from the high-elevation) were transferred 
to a laboratory in Hangzhou Normal University. The females were 
randomly housed in twelve 60 × 40 × 30 cm terraria (4–5 females 
per terrarium) filled with a 20 cm depth of moist sand. Terraria 
were housed in an AAPS (artificial atmospheric phenomena simula-
tor) room at 20 ± 2°C on a natural light cycle. A 60-W light bulb 
was suspended above one end of each terrarium (20 cm above the 

terrarium floor) to provide supplementary heating from 0900 to 
1700 hr. Food, that is, mealworms (larvae of Tenebrio molitor) and 
house crickets (Achetus domesticus), and water enriched with vita-
mins and minerals were provided ad libitum. Parturition occurred 
between late July and mid-August. All newborns were weighed and 
measured for SVL, and individually marked using the toe-clipping 
method. Fifty-four females (26 from the low-elevation and 28 from 
the high-elevation) gave birth to young that were all well developed, 
whereas the remaining females produced litters with various num-
bers of stillborns. The mean values for body size (SVL and mass) of 
newborns from a single litter were used in the following analyses 
to avoid pseudoreplication, and the abnormal litters were excluded 
from analyses. All females and juveniles were released at the site of 
maternal capture.

2.4 | Skeletochronological analysis

Skeletochronology was used to assess individual age of P. vlangalii 
following Guarino, Di Già, and Sindaco (2010) and Dubey, Sinsch, 
Dehling, Chevalley, and Shine (2013). The third phalanxes of long-
est toes of the right hind limbs of some captured adult lizards (N = 25 
from the low-elevation and 19 from the high-elevation) were clipped 
in mid-July of 2011 and stored in 10% neutral-buffered formalin. 
Each individual digit was cleaned from surrounding tissues of the 
phalanx, decalcified in a 5% nitric acid solution from 24 to 48 hr, and 
then stained for 200 min in Harris’s hematoxylin. Stained bones were 
dehydrated using increasing ethanol concentrated solutions. Then, 
phalanxes were prepared for embedding in small paraffin blocks. 
Phalanx diaphysis cross sections (13 μm) were obtained by means of 
rotary microtome. Bone sections were observed under an optic mi-
croscope (Olympus BX40, Tokyo, Japan) equipped with a Pro-Series 
High Performance CCD Camera. Digital pictures were taken at 400× 
magnifications, and the number of lines of arrested growth (LAGs, 
the dense lines between bone growth zones after hematoxylin stain-
ing) was counted by two persons with previous experience of the 
technique. The endosteal resorption of LAGs, resulting from the re-
placement of periosteal bone with endosteal bone, was confirmed by 
determining the presence of the Kastschenko line (the division line 
between the endosteal and periosteal zones).

2.5 | Data analysis

We calculated an index of body condition using the residuals from a 
linear regression of ln-transformed body mass against ln-transformed 
SVL, and size-specific and mass-specific growth rates during the mark-
recapture experiments using the formula ln(measurement2/meas-
urement1)/(date2 − date1). The von Bertalanffy growth equation [a 
standard form: Lt = L∞ – (L∞ – L0)e−Kt, where Lt is the SVL at age t, L∞ is 
the theoretical maximum length at infinite age, L0 is the initial SVL, and 
K is a growth constant that describes the rate at which L∞ is attained] 
is assumed to be appropriate to describe lizard growth (El Mouden, 
Znari, & Brown, 1999; Schoener & Schoener, 1978). We calculated 
von Bertalanffy growth parameters from Ford–Walford plots for each 

F IGURE  1 Monthly mean air temperature and rainfall for the two 
sites where Phrynocephalus vlangalii were collected (data from http://
data.cma.cn/)

http://data.cma.cn/
http://data.cma.cn/
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population, which were constructed by regressing final (August 2012) 
SVL against initial (August 2011) SVL. Data from the mark-recapture 
study included individuals of 26.9–55.5 mm and 24.5–57.5 mm for 
the low-elevation and high-elevation populations, representing the 
upper 76% and 80% of the full-length ranges in the two populations, 
respectively. The values of L∞ and K were calculated from the follow-
ing equations: L∞ = α/(1–β) and K = −ln β, where α is the y-intercept 
and β is the slope of Ford–Walford plots. Then, we used the standard 
and transformed [R = dS/dt = K(L∞ – Lt)] von Bertalanffy growth equa-
tions using the mean SVL of newborns of each population as the body 
size at age of 0 year (L0) to estimate SVLs and growth rates at each 
age, respectively. Additionally, we used the transformed equation, 
t = ln[(L∞ – Lt)/(L∞ – L0)]/–K, to estimate the age for each individual 
captured in the field and at sexual maturity, using the recorded SVLs 
of the smallest reproductive females of each population.

Between-sex differences in body size and growth rate of juvenile 
lizards were ignored because the gender of juveniles was difficult to 
identify using an uninjured technique. Accordingly, one-factor analysis 
of variance (ANOVA) was used to determine between-site difference 
in body size of field-captured juveniles and newborns, or age esti-
mated by skeletochronology. Two-factor ANOVA was used to deter-
mine the differences in body size and estimated age of field-captured 
adults between populations and sexes, or differences in growth rate 
of recaptured juveniles between populations and years. Three-factor 
ANOVA was used to determine the differences in growth rate of re-
captured adults between populations, sexes, and years. One- (or two-) 
factor analysis of covariance (ANCOVA) was used to determine the 
differences in mass between populations (and between sexes) after 
removing the effect of SVL. The values of Cohen’s d for t test and par-
tial eta-square (ηp

2) for ANOVA (or ANCOVA) were presented as the 
measures of effect size to indicate the standardized difference and the 
proportion of effect variance in the total variance, respectively. A value 
of Cohen’s d below 0.2 or ηp

2 below 0.01 is considered as negligible, 
between 0.2 and 0.5 or between 0.01 and 0.06 as small, between 0.5 
and 0.8 or between 0.06 and 0.14 as medium, and >0.8 or 0.14 as 
large (Cohen, 1988). Prior to parametric analyses, the normality of 
distributions and homogeneity of variances in the data were tested 
using the Kolmogorov–Smirnov test and Bartlett’s test, respectively. 
Throughout this article, values are presented as mean ± standard error 
(SE), and the significance level is set at α = .05.

3  | RESULTS

3.1 | Body size of field-captured lizards

Juveniles from the low-elevation site were slightly smaller but not 
lighter than those from the high-elevation site (low-elevation vs. high-
elevation, SVL: 41.1 ± 0.3 mm vs. 41.9 ± 0.2 mm, one-factor ANOVA 
with site of origin as the factor: F1, 357 = 4.66, p = .031, ηp

2 = 0.013; 
mass: 2.95 ± 0.08 g vs. 2.96 ± 0.06 g, F1, 357 = 0.01, p = .939, 
ηp

2 < 0.001; Figure 2). The mean body mass of low-elevation juveniles 
was greater than that of high-elevation ones after removing the ef-
fect of SVL (one-factor ANCOVA with site of origin as the factor: F1, 

356 = 5.10, p = .025, ηp
2 = 0.014). Body size (two-factor ANOVA with 

site of origin and sex as the factors: F1, 733 = 1.11, p = .293, ηp
2 = 0.002) 

and mass (F1, 733 = 3.71, p = .054, ηp
2 = 0.005) of adult lizards did not 

show between-sex differences. There was an appreciable difference 
in adult body size between sites. Adults from the low-elevation site 
were smaller and lighter than those from the high-elevation site (SVL, 
55.8 ± 0.2 vs. 56.5 ± 0.2, F1, 733 = 6.70, p = .010, ηp

2 = 0.01; mass, 
6.70 ± 0.07 vs. 7.39 ± 0.09, F1, 733 = 36.29, p < .001, ηp

2 = 0.047; 
Figure 2). Between-site difference in body mass was still obvious after 
removing the effect of SVL (F1, 732 = 44.45, p < .001, ηp

2 = 0.057). 
Body mass of adults was affected by the interaction of site of ori-
gin × sex, with greatest mean value for high-elevation females but 
smallest for low-elevation males (F1, 733 = 10.36, p < .01, ηp

2 = 0.014). 
Adult SVL was not affected by the interaction of site of origin × sex 
(F1, 733 = 0.93, p = .334, ηp

2 = 0.001). Adults from the low-elevation 
site had worse body conditions than those from the high-elevation 
site (–0.031 ± 0.006 vs. 0.030 ± 0.008, F1, 733 = 38.08, p < .001, 
ηp

2 = 0.049), but juveniles did not (0.022 ± 0.021 vs. –0.015 ± 0.012, 
F1, 357 = 2.76, p = .098, ηp

2 = 0.008).

3.2 | Growth of lizards in the field

Overall, juveniles at the high-elevation site grew faster than those at 
the low-elevation site (Table 1, Figure 3). Juveniles increased their 
SVL (but not mass) more rapidly in 2011 than in 2012 (Table 1). 
The year × site of origin interaction had a significant effect on size-
specific growth rate, but not on mass-specific growth rate of juveniles 
(Table 1). The mean value of juvenile size-specific growth rate in 2011 
was highest at the high-elevation site, but lowest at the low-elevation 
site (Figure 3). Juvenile lizards increased their SVL (F1, 124 = 74.94, 
p < .001, ηp

2 = 0.377) and mass (F1, 124 = 21.26, p < .001, ηp
2 = 0.146) 

more rapidly than adult lizards (Figure 3). Both size-specific and mass-
specific growth rates of recaptured adults did not differ between 
years, between sites, and between sexes and were not affected by 
the interactions of these factors (Table 1).

3.3 | Body size of reproductive 
females and newborns

Females in the laboratory produced 54 clutches (26 from low-
elevation site, 28 from high-elevation site) between late July and 
mid-August. The smallest reproductive females were 51.7 mm and 
49.9 mm SVL for the low-elevation and high-elevation populations, 
respectively. Female SVL did not differ between the two popula-
tions (low-elevation vs. high-elevation, 56.6 ± 0.5 vs. 57.2 ± 0.6, one-
factor ANOVA with site of origin as the factor: F1, 52 = 0.47, p = .497, 
ηp

2 = 0.009). The mean value of neonate size was greater for the low-
elevation population (SVL: 27.4 ± 0.2 mm; mass: 0.87 ± 0.01 g) than 
that for the high-elevation population (SVL: 25.1 ± 0.2 mm; mass: 
0.73 ± 0.01 g; SVL, F1, 52 = 63.90, p < .001, ηp

2 = 0.551; mass, F1, 
52 = 50.91, p < .001, ηp

2 = 0.495). The body condition of newborns did 
not differ significantly between the two populations (0.008 ± 0.014 
vs. −0.007 ± 0.012, F1, 52 = 0.68, p = .413, ηp

2 = 0.013).
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F IGURE  2 Snout-vent length and mass distributions of Phrynocephalus vlangalii captured from the different elevation sites in 2011 and 2012
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3.4 | Age and growth rate estimation using the von 
Bertalanffy growth equation

The von Bertalanffy growth parameters, theoretical maximum length 
(L∞) and the growth constant (K), derived from simulated mark–recap-
ture datasets were 64.0 and 0.53, 70.2, and 0.45 for the low-elevation 
and high-elevation populations, respectively. Estimated age at sexual 

maturity for the low-elevation and high-elevation populations was 
2.1 and 1.8 years, respectively. Estimated SVLs of high-elevation 
lizards were larger than those of low-elevation ones over the age 
of 2 years, and estimated growth rates of high-elevation lizards 
were higher than those of low-elevation ones at each age (Figure 4). 
Mean estimated age of field-captured adults was greater at the low-
elevation site (3.13 ± 0.07 years) than that at the high-elevation site 

TABLE  1 Results of two-factor (with year and site of origin as the factors for juveniles) or three-factor (with year, site of origin, and sex as 
the factors for adults) ANOVAs on specific growth rate of Phrynocephalus vlangalii at different elevations in the field mark-recapture 
experiments

Juvenile Adult

Size-specific growth rate Mass-specific growth rate Size-specific growth rate
Mass-specific growth 
rate

Year F1, 77 = 4.95, p = .029, 
ηp

2 = 0.060
F1, 77 = 0.03, p = .858, 

ηp
2 = 0.0004

F1, 38 = 2.08, p = .157, 
ηp

2 = 0.052
F1, 38 = 0.42, p = .521, 

ηp
2 = 0.011

Site of origin F1, 77 = 5.48, p = .022, 
ηp

2 = 0.066
F1, 77 = 11.04, p < .01, 

ηp
2 = 0.125

F1, 38 = 1.97, p = .169, 
ηp

2 = 0.049
F1, 38 = 2.81, p = .102, 

ηp
2 = 0.069

Sex F1, 38 = 0.48, p = .491, 
ηp

2 = 0.013
F1, 38 = 1.75, p = .193, 

ηp
2 = 0.044

Year × site of origin F1, 77 = 6.52, p = .013, 
ηp

2 = 0.078
F1, 77 = 3.07, p = .084, 

ηp
2 = 0.038

F1, 38 = 1.31, p = .260, 
ηp

2 = 0.033
F1, 38 = 1.20, p = .281, 

ηp
2 = 0.031

Year × sex F1, 38 = 1.64, p = .207, 
ηp

2 = 0.041
F1, 38 = 0.07, p = .793, 

ηp
2 = 0.002

Site of origin × sex F1, 38 = 0.81, p = .373, 
ηp

2 = 0.021
F1, 38 = 0.39, p = .535, 

ηp
2 = 0.010

Year × site of origin × sex F1, 38 = 0.10, p = .753, 
ηp

2 = 0.003
F1, 38 = 0.02, p = .890, 

ηp
2 = 0.0005

F IGURE  3 Mean values (+SE) of size- and mass-specific growth rates of juvenile and adult Phrynocephalus vlangalii at different elevations in 
the field mark-recapture experiments. The asterisks (*) indicate significant differences (p < 0.05)
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(2.72 ± 0.03 years; two-factor ANOVA with site of origin and sex as 
the factors: F1, 733 = 32.18, p < .001, ηp

2 = 0.042), but did not differ 
between sexes (F1, 733 = 1.59, p = .208, ηp

2 = 0.002; Figure 5).

3.5 | Age estimation by skeletochronology

Age determination by bone layers showed that the mean age for 
individuals from the low-elevation site (3.68 ± 0.24 years, ranging 
from 2 to 6 years) was greater than that from the high-elevation site 
(3.00 ± 0.22 years, ranging from 2 to 5 years; one-factor ANOVA with 
site of origin as the factor: F1, 42 = 4.24, p = .046, ηp

2 = 0.092).

4  | DISCUSSION

As reported in other lizards (Grant & Dunham, 1990; Iraeta, Salvador, 
& Díaz, 2013; Leache, Helmer, & Moritz, 2010; Mathies & Andrews, 
1995; Rohr, 1997; Sinervo & Adolph, 1994; Sorci, Clobert, & Belichon, 
1996), significant altitudinal variations in life history traits of P. vlan-
galii were showed in this study. Interestingly, low-elevation lizards 

were larger at birth, but smaller in adulthood than high-elevation ones 
(despite small difference in the mean values of adult SVL and mass). As 
a consequence of adaptation to local environments, probably, larger 
neonate size is advantageous for increasing survival probability in 
low-elevation but slow-growth environments (Sinervo, 1990; Warner 
& Andrews, 2003), while larger adult size is conducive to improving 
heat conservation and maintaining body temperature in colder high-
elevation environments (Olalla-Tarraga, Rodriguez, & Hawkins, 2006; 
Partridge & Coyne, 1997).

In earlier studies of P. vlangalii, offspring size was believed to in-
crease with increasing altitude (Jin & Liu, 2007; Li et al., 2014). This 
difference between the results of these studies may be due to differ-
ences in measurement methods for reproductive traits or population 
sampling. In the Jin and Liu (2007) study, offspring size of P. vlangalii 
was assessed using the mass of scaled embryos that removed from 
pregnant females, rather than the mass of newborns. Scaled em-
bryos continued to grow before parturition, consequently, offspring 
size might be underestimated. In fact, mean mass of embryos from 
the low-elevation population (0.89 g) was slightly larger than that 
from the high-elevation population (0.85 g), if others were excluded. 

F IGURE  4 The estimated snout-vent lengths and annual growth 
rates at each age using the von Bertalanffy growth equation

F IGURE  5 The estimated age of adult lizards captured from 
different elevation sites using the von Bertalanffy growth equation
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The Li et al. (2014) study included the high-elevation population that 
studied here, but not the low-elevation population. Therefore, these 
results from different studies may not be contradictory to each other 
and indicate that life history responses to local environments may 
be more complicated than expected and vary with site and year of 
the study (Angilletta, Steury et al., 2004; Sears & Angilletta, 2004; 
Stearns, 1992). That larger adult size for high-elevation lizards than 
low-elevation ones was also observed in the Li et al. (2014) study.

Newborns from high-elevation population were smaller than those 
from low-elevation population, which was inconsistent with our first 
prediction. If between-site difference in adult body size of P. vlangalii 
resulted from newborn size variation, the opposite pattern should 
be produced. Offspring size is assumed to affect animal growth, sur-
vival, and size at sexual maturity (Marshall & Keough, 2008; Räsänen, 
Söderman, Laurila, & Merilä, 2008). Large offspring are favored in 
poor-growing (such as low temperature, food scarcity) environ-
ments (Sinervo, 1990; Warner & Andrews, 2003). Why did not lager 
newborns occur in relatively colder, high-elevation environment in 
P. vlangalii? One possibility is that environmental condition at the high-
elevation site is not as disadvantageous as expected for lizard growth. 
In fact, another study showed that potential prey availability at high-
elevation site was more abundant and led to higher growth rates for 
juveniles, than at low-elevation site (Lu et al., in review). Accordingly, 
offspring size is not likely to be an important source of variation in 
adult body size of P. vlangalii.

Consistent with our second prediction, high-elevation lizards 
grew more rapidly than low-elevation ones. The growth rate of liz-
ards may be immediately affected by food availability (Iraeta et al., 
2013). The high-elevation site could provide more food resources 
and allow P. vlangalii individuals to grow faster and surpass the ad-
verse effects of smaller neonate body size, and finally reach a similar 
or even larger adult body size compared with the low-elevation site. 
The estimated growth curve (Figure 4) suggests that, despite a smaller 
size at birth, high-elevation juvenile P. vlangalii would reach a similar 
or larger size than low-elevation juveniles during the third active sea-
son. Presumably, parturition occurred naturally in late July and mid-
August at the low-elevation and high-elevation sites, respectively (Li 
et al., 2014); newborns from both populations would become sexual 
maturity in that season (September and June for the low-elevation 
and high-elevation populations, respectively) according to estimated 
ages at sexual maturity. Therefore, larger body size of high-elevation 
adult P. vlangalii is likely to be due to faster growth during the juve-
nile stages. Similar results have been observed in other lizard species. 
For example, hatchling Psammodromus algirus and Sceloporus graciosus 
from high-elevation populations is smaller, but grow faster over the 
active season to reach the same or larger size by the following years 
compared with those from low-elevation populations (Iraeta et al., 
2006; Sears, 2005).

An individual animal can achieve a relatively large adult size by de-
laying maturation or prolonging growth period (Angilletta, Niewiarowski 
et al., 2004; Iraeta et al., 2006). Delayed maturation at a large body size 
occurs in some other species of reptiles and amphibians (Liao & Lu, 
2011; Sears & Angilletta, 2004; Wapstra, Swain, & O’Reilly, 2001). In 

this study, however, the estimated age at sexual maturity was younger 
for the high-elevation population than for the low-elevation population, 
which was inconsistent with our third prediction. If delayed maturation 
occurred in the high-elevation population, an older age at sexual matu-
rity should be observed. Accordingly, large adult body size for P. vlangalii 
at the high-elevation site might not be caused by the delayed matu-
ration. Delayed maturation at a larger body size is favored in colder 
environments where juvenile lizards tend to have higher survivorship 
(Sears & Angilletta, 2004; Shine & Charnov, 1992; Stearns, 1992). 
Unfortunately, we were currently unable to determine between-site 
difference in juvenile survival rate due to limited mark-recapture data. 
However, no obvious difference in juvenile return rate (the proportion 
of recaptured individuals in total marked lizards) was found between 
the two study sites (low-elevation vs. high-elevation: 22.6% vs. 21.5%), 
probably implying a similar survival probability in the two populations.

Larger body size can also result from the increased longevity 
(Morrison et al., 2004; Speakman, 2005). Longevity of lizards from the 
two study populations (the mean values for estimated age of field-
captured adults both based on the von Bertalanffy growth equation 
and skeletochronology) suggested that on average, adults were older 
in the low-elevation population than in the high-elevation population. 
Individuals in a population that live longer should result in greater 
mean population age (Leclair & Laurin, 2006). Despite having a larger 
adult body size, high-elevation individuals did have a shorter longevity 
than low-elevation ones, which was inconsistent with our final pre-
diction. Therefore, the longevity is unlikely to be an important factor 
leading to a larger adult body size for the high-elevation population. 
No direct correlation between adult body size and longevity was also 
found in other reptile and amphibian species (Leclair & Laurin, 2006; 
Oromi, Sanuy, & Sinsch, 2012; Roitberg & Smirina, 2006). For exam-
ple, the mountain populations of sand lizards (Lacerta agilis) live longer, 
but have similar adult body size, compared with the lowland popula-
tions (Roitberg & Smirina, 2006). Furthermore, environmental oxygen 
concentration is also considered as a potential factor influencing adult 
body size of ectothermic animals (Callier & Nijhout, 2014). However, 
reduced oxygen concentration at the high-elevation site should pro-
duce smaller adult body sizes, which is contrary to our results.

In summary, high-elevation P. vlangalii attained a larger adult body 
size than low-elevation ones, which was primarily due to fast individ-
ual growth rates that are likely to be induced by local environmental 
resource. Our results possibly reflected divergent life history strate-
gies between the low- and the high-elevation populations of P. vlan-
galii under different environmental conditions. Higher food availability 
at the high-elevation site allowed lizards to be born at a smaller size, 
grow faster, and attain a similar or even larger size after sexual matu-
rity. Contrarily, larger neonates were produced at the low-elevation 
site with less food resources, lived longer, but grew more slowly to a 
smaller adult size.
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