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Effect of time-correlated noises on cell-fate induction
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Cell-fate induction is a very important concept in developmental biology, which involves an intrinsic
irreversibility in the developmental process. In order to explore how cell-fate induction will be influenced by
environmental noise, the effects of the time-correlated noises on the saddle-node landscape of cell-fate induction
are investigated in this study. The main results show clearly that if the correlation time is not zero, then the
time-correlated noises may not only lead to the change (or disappearance) of saddle-node bifurcation of cell-fate
induction but also lead to the occurrence of the reentrance phenomena. All of these results provide a theoretical
possibility that the time-correlated noise could lead to the abnormality of a saddle-node landscape of cell-fate
induction.
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I. INTRODUCTION

As pointed out by Ferrell [1], Waddington’s epigenetic
landscape is probably the most famous and most powerful
metaphor in developmental biology, which depicts how a cell
progresses from an undifferentiated state to one of a number
of discrete, distinct, differentiated cell fates during develop-
ment [1,2]. However, unlike Waddington’s pattern, Ferrell
proposed the concept of cell-fate induction, which possesses
an intrinsic irreversibility that is missing from Waddington’s
picture [1]. According to Ferrell’s definition, cell-fate in-
duction means that a cell or a group of cells produces an
inductive stimulus that causes another cell to adopt a new
phenotype [1]. Ferrell emphasized two key features of the
cell-fate induction: (i) the inductive stimulus need not be
maintained indefinitely; after some commitment point, the
stimulus may be withdrawn and the cell will continue with its
induced development program; and (ii) the induction results
in an all-or-none switch between qualitatively distinct cell
fates [1]. Obviously, these two features strongly imply that
the positive feedback regulation and bistability should be
involved in the process of cell-fate induction. Some studies
have shown that the concept of cell-fate induction should
be reasonable, including mesoderm induction in the early
Xenopus laevis embryo [3], progesterone-induced maturation
in Xenopus oocytes [4,5], R7 photoreceptor induction in the
Drosophila melanogaster eye [6], and vulval induction in
Caenorhabditis elegans larvae [7]. Recently, a study on the
determination of Drosophila ovarian germline stem cell fate
also provided strong experimental evidence, in which there
is a feedback loop with bistable regulation induced by an
external BMP signal [8].

*Corresponding author: yitao@ioz.ac.cn

For simplicity and without loss of generality, Ferrell uses
a simple single-variable model with positive feedback reg-
ulation to characterize the dynamic properties of cell-fate
induction [1]. Although this simple theoretical model has
been investigated by many authors [1,9–14], Ferrell mainly
focused on how the inductive stimulus affects the dynamic
characteristics of the system. Based on the analysis of the po-
tential surface, he thinks that the cell commits to the induced
fate because the valley corresponding to the uninduced fate
disappears through a saddle-node bifurcation, so the saddle-
node landscape resulting in the cell-fate induction should be
different from Waddington’s epigenetic landscape [1].

Of course, some other potential factors may also play
an important role in cell-fate determination. For example,
lateral inhibition based on the double-negative feedback loop
underlies the assignment of different fates to cells in many
developmental processes [1,15]. A previous study considered
the impact of local feedback loops in a model of lateral inhi-
bition based on the Notch signaling pathway and elucidated
the roles of intracellular and intercellular delays in controlling
the overall system behavior [15]. Ferrell also pointed out that
the pitchfork bifurcation based on the lateral inhibition should
be one possible important mechanism that can lead to cell-fate
determination and used a simple theoretical model to reveal
the dynamical properties of pitchfork bifurcation based on the
lateral inhibition [1]. However, Ferrell emphasized that the
key of pitchfork bifurcation is that the system is symmetrical
and any imperfection in the symmetry will change the pitch-
fork bifurcation into a saddle-node bifurcation [1]. Therefore,
in this study, we mainly focus our attention on the concept of
cell-fate induction based on the saddle-node bifurcation.

Since the stochastic fluctuations of the environment can-
not be avoided [16–22], many studies have investigated the
effect of environmental noise on gene expression and reg-
ulation [13,14,19–21,23]. For example, some experimental
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studies based on the single gene networks corresponding
to Eq. (1) showed that the basal synthesis rate (α0) and
degradation rate (γ ) not only depend on the biochemical
reactions, mutations, and concentrations of other proteins but
also fluctuate randomly [21]. On the other hand, in the gene
expression process, many transcription factors are unstable
proteins destroyed by ubiquitin-mediated proteolysis [24].
Some experimental evidences showed that a similar overlap
of activation domains and destruction elements occurs in
some unstable transcription factors and there exists a close
correlation between the ability of an acidic activation domain
to activate transcription and to signal proteolysis [24,25]. So,
a challenging question is whether the time-correlated noises
between the basal synthesis rate and the degradation rate will
lead to the change in the saddle-node bifurcation of cell-fate
induction. The answer to this question should have important
biological significance for a better understanding of the role
of cell-fate induction in developmental biology.

II. MODEL AND ANALYSIS

A. Cell-fate induction model and time-correlated noises

In this paper, we still consider the simple one-variable
model studied by Ferrell [1], which is given by

dx

dt
= αxn

kn + xn
+ α0 − γ x, (1)

where x represents the concentration of protein X, the term
αxn/(kn + xn) + α0 denotes the synthesis rate of X, and the
parameter γ is the degradation rate of X. For the synthesis
rate, (i) the function αxn/(kn + xn) is called the Hill-type
function, where α represents the maximum rate of feedback-
dependent synthesis of X, k is the concentration of X when
the feedback synthesis rate is half maximal, and n is called the
Hill coefficient; and (ii) the parameter α0 is the basal synthesis
rate and it is also called the inductive stimulus in Ferrell’s
schematic view of cell-fate induction [1].

Notice that the potential of Eq. (1), de-
noted by �(x), can be easily given by �(x) =
− ∫

[αxn/(kn + xn) + α0 − γ x]dx. Then, as shown by
Ferrell [1], we can see how the potential surface changes
as α0 changes. Specifically, for the dynamic properties of
Eq. (1), it is easy to see that for given parameters α, k, n (with
n > 1), and γ , there exist two critical values of α0, denoted
by α′

0 and α′′
0 , respectively, with α′

0 < α′′
0 , such that (i) only

one equilibrium exists and it is globally asymptotically
stable if α0 < α′

0 or α0 > α′′
0 , and (ii) if α0 is in the interval

α′
0 < α0 < α′′

0 , then three equilibria exist, denoted by x∗
1 , x∗

2 ,
and x∗

3 , respectively, with x∗
1 < x∗

2 < x∗
3 , and both x∗

1 and
x∗

3 are locally asymptotically stable and x∗
2 is an unstable

saddle point [1,9,14]. So, for convenience, (α′
0, α

′′
0 ) can be

called the bistable interval of α0. The difference between
α′′

0 and α′
0 (or the size of the bistable interval), denoted by

�α0 = α′′
0 − α′

0, characterizes how the change of cell fate
depends sensitively on the change of α0. This implies that
if �α0 is small (but �= 0), then the cell-fate induction will
appear to be a significant critical characteristic with the
change of α0. Otherwise, if �α0 is large, then the sensitivity
of this process to the change of α0 will be reduced.

We now consider the effect of the time-correlated noises
on the cell-fate induction. Let both α0 and γ be the ran-
dom variables, which are defined as α0 = α0 + ξα0 (t ) and
γ = γ + ξγ (t ), respectively, where both ξα0 (t ) and ξγ (t ) are
white noises with 〈ξα0 (t )〉 = 0, 〈ξγ (t )〉 = 0, 〈ξα0 (t )ξα0 (t ′)〉 =
2Dα0δ(t − t ′), 〈ξγ (t )ξγ (t ′)〉 = 2Dγ δ(t − t ′), and

〈ξα0 (t )ξγ (t ′)〉 = 〈ξα0 (t ′)ξγ (t )〉

= λ
√

Dα0Dγ

τ
exp

(−|t − t ′|
τ

)

→ 2λ
√

Dα0Dγ δ(t − t ′), as τ → 0, (2)

where τ is the correlation time and λ is the correlation coef-
ficient between ξα0 (t ) and ξγ (t ) [26,27]. Then, the stochastic
differential equation (or the Langevin equation) correspond-
ing to Eq. (1) is

dx

dt
= αxn

kn + xn
+ α0 − γ x + ξα0 (t ) − xξγ (t ). (3)

B. Potential function

Let φ(x, t ) denote the probability density distribution that
the system state is x at time t . Then, in general, the probability
density distribution φ(x, t ) obeys the equation

∂φ(x, t )

∂t
= − ∂

∂x

[
αxn

kn + xn
+ α0 − γ x

]
φ(x, t )

− ∂

∂x
〈ξα0 (t )δ(x(t ) − x)〉

− ∂

∂x
(−x)〈ξγ (t )δ(x(t ) − x)〉, (4)

where φ(x, t ) = 〈δ(x(t ) − x)〉 [27,28]. For the situation with
small τ , the Fokker-Planck equation of the small-τ approxi-
mation for Eq. (3) is given by

∂φ(x, t )

∂t
= − ∂

∂x
f (x)φ(x, t )

+Dα0

∂

∂x
g1(x)

∂

∂x
g1(x)φ(x, t )

+ λ
√

Dα0Dγ

∂

∂x
g1(x)

∂

∂x
h2(x)φ(x, t )

+Dγ

∂

∂x
g2(x)

∂

∂x
g2(x)φ(x, t )

+ λ
√

Dα0Dγ

∂

∂x
g2(x)

∂

∂x
h1(x)φ(x), (5)

where f (x) = αxn/(kn + xn)+α0 − γ x, g1(x)=1, g2(x) =
−x, and

h1(x) = g1(x)

[
1 + τg1(x)

d

dx

(
f (x)

g1(x)

)]
,

h2(x) = g2(x)

[
1 + τg2(x)

d

dx

(
f (x)

g2(x)

)]
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[27,28]. Notice also that this equation can be rewritten as

∂φ(x, t )

∂t
= − ∂

∂x
[f (x) + Dγ x − λ

√
Dα0Dγ h1(x)]φ(x, t )

+ ∂2

∂x2
[Dα0 + Dγ x2 + λ

√
Dα0Dγ

× (h2(x) − xh1(x))]φ(x, t ), (6)

since g1(x) = 1 and g2(x) = −x. Then, it is easy to see that
the stationary solution of this equation, denoted by φst (x), can
be given by φst (x) = N e−�(x), where the potential function is

�(x) = ln G(x) −
∫ x f (s) + Dγ s − λ

√
Dα0Dγ h1(s)

G(s)
ds,

(7)

where G(x) = Dα0 + Dγ x2 + λ
√

Dα0Dγ (h2(x) − xh1(x)).
Notice that h2(x) − xh1(x) = −2x − 2τxf ′(x) + τf (x) and
that Dα0 + Dγ x2 − 2λ

√
Dα0Dγ x > 0 holds for all pos-

sible x � 0. Then, we take a small τ such that Dα0 +
Dγ x2 − 2λ

√
Dα0Dγ x − τλ

√
Dα0Dγ (2xf ′(x) − f (x)) > 0

[i.e., G(x) > 0] holds for all possible x � 0.
To characterize the property of the potential function �(x)

[or the property of the stationary probability density distri-
bution φst (x)], we need to solve the solution of the equation
d�(x)/dx = 0. Notice that

d�(x)

dx
= −f (x) + Dγ x + λ

√
Dα0Dγ (h′

2(x) − xh′
1(x))

Dα0 + Dγ x2 + λ
√

Dα0Dγ (h2(x) − xh1(x))
,

(8)

where h′
2(x) − xh′

1(x) = −1 − 2τxf ′′(x). Then, the solution
of d�(x)/dx = 0 is also equivalent to the solution of the
equation

H (x) ≡ −f (x) + Dγ x − λ
√

Dα0Dγ (1 + 2τxf ′′(x)) = 0,

(9)

where f ′′(x) = αnkn[(n − 1)knxn−2 − (n + 1)x2n−2]/(kn +
xn)3.

For τ � 0, it is easy to see that (i) if α0 + λ
√

Dα0Dγ � 0,
then Eq. (9) has at most two positive real solutions, or has
no positive solution, and (ii) if α0 + λ

√
Dα0Dγ > 0, then

Eq. (9) has at most three positive real solutions and has at
least one positive real solution. In this paper, to show the
effect of time-correlated noises on the saddle-node landscape
of cell-fate induction, we consider only the situation with
α0 + λ

√
Dα0Dγ > 0.

For α0 + λ
√

Dα0Dγ > 0, notice that lim
x→0

H (x) = −α0 −
λ
√

Dα0Dγ < 0, dH (x)/dx|x=0 > 0, and lim
x→+∞ H (x) =

+∞. Then, similar to Eq. (1), the situation for which Eq. (9)
has only one positive real solution, denoted by x∗, corresponds
to the monostable state of Eq. (3) (or φst (x) is a monomodal
distribution) since dH (x)/dx|x=x∗ > 0, and, on the other
hand, the situation for which Eq. (9) has three positive real
solutions, denoted by x∗

1 , x∗
2 , and x∗

3 , respectively, with
x∗

1 < x∗
2 < x∗

3 , corresponds to the bistable state of Eq. (3) [or
φst (x) is a bimodal distribution] since dH (x)/dx|x=x∗

1
> 0,

dH (x)/dx|x=x∗
2

< 0, and dH (x)/dx|x=x∗
3

> 0.

C. Effect of noises on cell-fate induction

In the following numerical analysis, we take the parameters
α = 0.55, k = 1, n = 5, and γ = 0.5 [1], and Dα0 = 0.5 and
Dγ = 0.1. In order to show how the time-correlated noises
will act on the saddle-node bifurcation landscape of cell-fate
induction, we consider first the situation with τ = 0. For
this situation, we can see that (i) there is only one bistable
region on the λ-α0 parameter plane (i.e., the bistable state
can only occur in this region) [see Fig. 1(a), where, for α0 +
λ
√

Dα0Dγ > 0, the gray shaded area denotes the monostable
region, and the red shaded area the bistable region; the purple
shaded area denotes α0 + λ

√
Dα0Dγ < 0), and (ii) for all

possible λ ∈ (0, 1), the size of the bistable interval of α0, �α0,
is kept as a constant. This result shows clearly that, for τ = 0,
although the change of λ will lead to a change of the specific
position of the bistable interval of α0, the basic characteristics
of the saddle-node bifurcation of cell-fate induction, or the
size of the bistable interval of α0, �α0, will not change with
the change of λ. Of course, we also noticed that the stationary
statistic properties of Eq. (3) with τ = 0 has been preliminar-
ily investigated by a previous study [13].

Second, for the situation with τ > 0 (where we take τ =
0.5), we can see that there are three bistable regions on the
λ-α0 parameter plane, which are marked using red, blue,
and green, respectively [see Fig. 1(b)]. Different from the
situation with τ = 0, there exist two critical values of λ,
denoted by λ′

c and λ′′
c , respectively, with λ′

c < λ′′
c , such that

the occurrence of a bistable state is impossible for all possible
α0 if λ is in the interval λ′

c < λ < λ′′
c [where λ′ and λ′′ are

denoted by two black vertical dashed lines in Fig. 1(b)]. For
each of these three bistable regions, the size of �α0 depends
on λ. For example, the size of �α0 in the red region will
decrease with the increase of λ in the interval 0 < λ < λ′

c

[see Fig. 1(c)]. In particular, we can see also that for some
given values of α0, the system will undergo a succession of
three phase transitions, bistable phase (red region) → monos-
table phase (gray region) → bistable phase (blue region),
with the change of λ from −1 to 1. This is the so-called
the reentrance phenomenon [26,27]. As an example, for α0 =
0.405 [denoted by the black horizontal line in Fig. 1(b)], a
succession of three phase transitions with the change of λ is
shown in Fig. 1(d). On the other hand, we can see also that
for some given values of λ [for example, λ = 0.75, denoted
by the black vertical line in Fig. 1(b)], a succession of four
phase transitions, bistable phase (green region) → monostable
phase (gray region) → bistable phase (blue region) → monos-
table phase (gray region), occurs with the change of α0 [see
Fig. 1(e)]. These results strongly imply that if the correlation
time τ is not zero, then the time-correlated noises could lead
to the change in the saddle-node bifurcation landscape of
cell-fate induction, or the time-correlated noises could lead
to the abnormality of cell-fate induction.

III. CONCLUSION

In this paper, based on Ferrell’s simple theoretical model
[Eq. (1)], we investigated the possible effects of the time-
correlated noises between the basal synthesis rate and the
degradation rate on the saddle-node landscape of cell-fate
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FIG. 1. The effects of the inductive stimulus α0 and correlation coefficient λ on the saddle-node bifurcation of cell-fate induction. (a) For
the situation with τ = 0, the red shaded area on the λ-α0 parameter plane denotes the bistable region, and the purple shaded area corresponds
to α0 + λ

√
Dα0Dγ � 0 [this is the same also in (b)]. In this situation, the size of the bistable interval of α0 is kept as a fixed constant for all

possible λ. (b) For the situation with τ > 0 (where we take τ = 0.5), there are three bistable regions on the λ-α0 parameter plane, which are
red, blue, and green areas, respectively. The two black vertical dashed lines correspond to the two critical values of λ, denoted by λ′ and λ′′

with λ′ < λ′′, such that the bistability is impossible for all possible α0 if λ′ < λ < λ′′. (c) As an example, the size of the bistable interval of α0

depends on the change of λ in the red bistable region. (d) Corresponding to the black horizontal line in (b) (i.e., α0 = 0.405), a succession of
three phase transitions occurs with the change of λ. (e) Similarly, corresponding to the black vertical line in (b) (i.e., λ = 0.75), a succession
of four phase transitions occurs with the change of α0.

induction. Although this model may be not enough to be
true, it reflects some essential dynamical characteristics of
cell-fate induction. In our analysis, for simplicity, we assume
only the inductive stimulus (α0) and degradation rate (γ ) to
be two time-correlated random variables. In spite of this, our
results still clearly indicate that the time-correlated noises may
have a profound impact on the process of cell-fate induction.
First, if the correlation time, τ , is zero (τ = 0), then the size of
the bistable interval of α0, �α0, should be a fixed constant for
all possible λ, or the basic characteristics of cell-fate induction

will not be changed for all possible λ. Second, if τ > 0, then
there may be some values of λ such that the occurrence of
the saddle-node bifurcation is impossible for all possible α0.
Third, for the situation with τ > 0, in the bistable regions
on the λ-α0 parameter plane, the size of �α0 may strongly
depend on the change of λ. Finally, if τ > 0, then, (i) for
some given α0, the existence of reentrance phenomena could
be possible with the change of λ, and (ii) similarly, for some
given λ, the reentrance phenomena could be also possible with
the change of α0.
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Cell-fate induction based on the saddle-node bifurca-
tion is an important theoretical concept in developmen-
tal biology. It provides a possible mechanism to ex-
plain the intrinsic irreversibility in the developmental pro-
cess that is missing from Waddington’s epigenetic land-
scape [1,2]. However, our results provide a theoretical
possibility that the time-correlated noises could lead to
the abnormality of the saddle-node landscape of cell-
fate induction. Therefore, a further challenging question
that should be considered in the future is how cell-fate

induction in a real-life system resists environmental stochastic
fluctuations.

ACKNOWLEDGMENTS

In this study, X.-D.Z. and Y.T. were supported by the
National Natural Science Foundation of China (Grants No.
31770426, No. 11471311, and No. 11401562); D.-H.C. and
Y.T. were supported by the National Basic Research Program
of China (Grant No. 2013CB945000).

[1] J. E. Ferell Jr., Curr. Biol. 22, R458 (2012).
[2] C. H. Waddington, The Strategy of the Genes (Allen and Unwin,

London, 1957).
[3] J. C. Smith, Curr. Opin. Cell Biol. 7, 856 (1995).
[4] J. E. Ferell Jr., and E. M. Machleder, Science 280, 895 (1998).
[5] J. E. Ferell Jr., Bioessays 21, 833 (1999).
[6] D. Yamamoto, Bioessays 16, 237 (1994).
[7] P. W. Sternberg, WormBook (2005), doi:10.1895/wormbook.1.6.1.
[8] L.-X. Xia, X.-D. Zheng, W.-J. Zheng, G.-Q. Zhang, H.-L.

Wang, Y. Tao, and D.-H. Chen, Curr. Biol. 22, 515 (2012).
[9] P. Smolen, D. A. Baxter, and J. H. Byrne, Am. J. Cell. Physiol.

274, C531 (1998).
[10] W. Xiong and J. E. Ferrell Jr., Nature (London) 426, 460

(2003).
[11] W. K. Smits, O. P. Kuipers, and J. W. Veening, Nat. Rev.

Microbiol. 4, 259 (2006).
[12] M. R. Bennett, D. Volfson, L. Tsimring, and J. Hasty, Biophys.

J. 92, 3501 (2007).
[13] Q. Liu and Y. Jia, Phys. Rev. E 70, 041907 (2004).
[14] X.-D. Zheng, X.-Q. Yang, and Y. Tao, PLoS One 6, e17104

(2011).
[15] H. Momiji and N. A. M. Monk, Phys. Rev. E 80, 021930 (2009).
[16] R. M. May, Stability and Complexity in Model Ecosystems

(Princeton University Press, Princeton, NJ, 1973).
[17] R. Lande, S. Engen, and B.-E. Sæther, Stochastic Population

Dynamics in Ecology and Conservation (Oxford University
Press, New York, 2003).

[18] M. B. Elowitz, A. J. Levine, E. D. Siggia, and P. S. Swain,
Science 297, 1183 (2002).

[19] J. Hasty, D. McMillen, and J. J. Collins, Nature (London) 420,
224 (2002); M. Kærn, T. C. Elston, W. J. Blake, and J. J. Collins,
Nat. Rev. 6, 451 (2005).

[20] A. Raj and A. van Oudenaarden, Cell 135, 216 (2008).
[21] A. Becskei and L. Serrano, Nature (London) 405, 590 (2000);

M. B. Elowitz and S. Leibler, ibid. 403, 335 (2000); T. S.
Gardner, C. R. Cantor, and J. J. Collins, ibid. 403, 339 (2000);
J. Hasty, J. Pradines, M. Dolnik, and J. J. Collins, Proc. Natl.
Acad. Sci. U.S.A. 97, 2075 (2000); K. Ahmad and S. Henikoff,
Cell 104, 839 (2001).

[22] A. La Cognata, D. Valenti, A. A. Dubkov, and B. Spagnolo,
Phys. Rev. E 82, 011121 (2010); O. A. Chichigina, A. A.
Dubkov, D. Valenti, and B. Spagnolo, ibid. 84, 021134 (2011);
X.-D. Zheng, L.-L. Deng, W.-Y. Qiang, R. Cressman, and Y.
Tao, ibid. 95, 042404 (2017); X.-D. Zheng, C. Li, S. Lessard,
and Y. Tao, ibid. 96, 032414 (2017); Phys. Rev. Lett. 120,
218101 (2018).

[23] B. L. Xu and Y. Tao, J. Theor. Biol. 243, 214 (2006).
[24] S. E. Salghetti, M. Muratani, H. Wijnen, B. Futcher, and W. P.

Tansey, Proc. Natl. Acad. Sci. U.S.A. 97, 3118 (2000).
[25] D. M. Lonard, Z. Nawaz, C. L. Smith, and B. W. O’Malley,

Mol. Cell 5, 939 (2000); A. Dace, L. Zhao, K. S. Park, T.
Furuno, N. Takamura, M. Nakanish, B. L. West, J. A. Hanover,
and S. Cheng, Proc. Natl. Acad. Sci. U.S.A. 97, 8985 (2000).

[26] F. Castro, A. D. Sanchez, and H. S. Wio, Phys. Rev. Lett. 75,
1691 (1995).

[27] Y. Jia and J.-R. Li, Phys. Rev. Lett. 78, 994 (1997).
[28] J. M. Sancho, M. San Miguel, S. L. Katz, and J. D. Gunton,

Phys. Rev. A 26, 1589 (1982).

042406-5

https://doi.org/10.1016/j.cub.2012.03.045
https://doi.org/10.1016/j.cub.2012.03.045
https://doi.org/10.1016/j.cub.2012.03.045
https://doi.org/10.1016/j.cub.2012.03.045
https://doi.org/10.1016/0955-0674(95)80070-0
https://doi.org/10.1016/0955-0674(95)80070-0
https://doi.org/10.1016/0955-0674(95)80070-0
https://doi.org/10.1016/0955-0674(95)80070-0
https://doi.org/10.1126/science.280.5365.895
https://doi.org/10.1126/science.280.5365.895
https://doi.org/10.1126/science.280.5365.895
https://doi.org/10.1126/science.280.5365.895
https://doi.org/10.1002/(SICI)1521-1878(199910)21:10<833::AID-BIES5>3.0.CO;2-P
https://doi.org/10.1002/(SICI)1521-1878(199910)21:10<833::AID-BIES5>3.0.CO;2-P
https://doi.org/10.1002/(SICI)1521-1878(199910)21:10<833::AID-BIES5>3.0.CO;2-P
https://doi.org/10.1002/(SICI)1521-1878(199910)21:10<833::AID-BIES5>3.0.CO;2-P
https://doi.org/10.1002/bies.950160406
https://doi.org/10.1002/bies.950160406
https://doi.org/10.1002/bies.950160406
https://doi.org/10.1002/bies.950160406
https://doi.org/10.1895/wormbook.1.6.1
https://doi.org/10.1016/j.cub.2012.01.056
https://doi.org/10.1016/j.cub.2012.01.056
https://doi.org/10.1016/j.cub.2012.01.056
https://doi.org/10.1016/j.cub.2012.01.056
https://doi.org/10.1152/ajpcell.1998.274.2.C531
https://doi.org/10.1152/ajpcell.1998.274.2.C531
https://doi.org/10.1152/ajpcell.1998.274.2.C531
https://doi.org/10.1152/ajpcell.1998.274.2.C531
https://doi.org/10.1038/nature02089
https://doi.org/10.1038/nature02089
https://doi.org/10.1038/nature02089
https://doi.org/10.1038/nature02089
https://doi.org/10.1038/nrmicro1381
https://doi.org/10.1038/nrmicro1381
https://doi.org/10.1038/nrmicro1381
https://doi.org/10.1038/nrmicro1381
https://doi.org/10.1529/biophysj.106.095638
https://doi.org/10.1529/biophysj.106.095638
https://doi.org/10.1529/biophysj.106.095638
https://doi.org/10.1529/biophysj.106.095638
https://doi.org/10.1103/PhysRevE.70.041907
https://doi.org/10.1103/PhysRevE.70.041907
https://doi.org/10.1103/PhysRevE.70.041907
https://doi.org/10.1103/PhysRevE.70.041907
https://doi.org/10.1371/journal.pone.0017104
https://doi.org/10.1371/journal.pone.0017104
https://doi.org/10.1371/journal.pone.0017104
https://doi.org/10.1371/journal.pone.0017104
https://doi.org/10.1103/PhysRevE.80.021930
https://doi.org/10.1103/PhysRevE.80.021930
https://doi.org/10.1103/PhysRevE.80.021930
https://doi.org/10.1103/PhysRevE.80.021930
https://doi.org/10.1126/science.1070919
https://doi.org/10.1126/science.1070919
https://doi.org/10.1126/science.1070919
https://doi.org/10.1126/science.1070919
https://doi.org/10.1038/nature01257
https://doi.org/10.1038/nature01257
https://doi.org/10.1038/nature01257
https://doi.org/10.1038/nature01257
https://doi.org/10.1038/nrg1615
https://doi.org/10.1038/nrg1615
https://doi.org/10.1038/nrg1615
https://doi.org/10.1038/nrg1615
https://doi.org/10.1016/j.cell.2008.09.050
https://doi.org/10.1016/j.cell.2008.09.050
https://doi.org/10.1016/j.cell.2008.09.050
https://doi.org/10.1016/j.cell.2008.09.050
https://doi.org/10.1038/35014651
https://doi.org/10.1038/35014651
https://doi.org/10.1038/35014651
https://doi.org/10.1038/35014651
https://doi.org/10.1038/35002125
https://doi.org/10.1038/35002125
https://doi.org/10.1038/35002125
https://doi.org/10.1038/35002125
https://doi.org/10.1038/35002131
https://doi.org/10.1038/35002131
https://doi.org/10.1038/35002131
https://doi.org/10.1038/35002131
https://doi.org/10.1073/pnas.040411297
https://doi.org/10.1073/pnas.040411297
https://doi.org/10.1073/pnas.040411297
https://doi.org/10.1073/pnas.040411297
https://doi.org/10.1016/S0092-8674(01)00281-1
https://doi.org/10.1016/S0092-8674(01)00281-1
https://doi.org/10.1016/S0092-8674(01)00281-1
https://doi.org/10.1016/S0092-8674(01)00281-1
https://doi.org/10.1103/PhysRevE.82.011121
https://doi.org/10.1103/PhysRevE.82.011121
https://doi.org/10.1103/PhysRevE.82.011121
https://doi.org/10.1103/PhysRevE.82.011121
https://doi.org/10.1103/PhysRevE.84.021134
https://doi.org/10.1103/PhysRevE.84.021134
https://doi.org/10.1103/PhysRevE.84.021134
https://doi.org/10.1103/PhysRevE.84.021134
https://doi.org/10.1103/PhysRevE.95.042404
https://doi.org/10.1103/PhysRevE.95.042404
https://doi.org/10.1103/PhysRevE.95.042404
https://doi.org/10.1103/PhysRevE.95.042404
https://doi.org/10.1103/PhysRevE.96.032414
https://doi.org/10.1103/PhysRevE.96.032414
https://doi.org/10.1103/PhysRevE.96.032414
https://doi.org/10.1103/PhysRevE.96.032414
https://doi.org/10.1103/PhysRevLett.120.218101
https://doi.org/10.1103/PhysRevLett.120.218101
https://doi.org/10.1103/PhysRevLett.120.218101
https://doi.org/10.1103/PhysRevLett.120.218101
https://doi.org/10.1016/j.jtbi.2006.06.003
https://doi.org/10.1016/j.jtbi.2006.06.003
https://doi.org/10.1016/j.jtbi.2006.06.003
https://doi.org/10.1016/j.jtbi.2006.06.003
https://doi.org/10.1073/pnas.97.7.3118
https://doi.org/10.1073/pnas.97.7.3118
https://doi.org/10.1073/pnas.97.7.3118
https://doi.org/10.1073/pnas.97.7.3118
https://doi.org/10.1016/S1097-2765(00)80259-2
https://doi.org/10.1016/S1097-2765(00)80259-2
https://doi.org/10.1016/S1097-2765(00)80259-2
https://doi.org/10.1016/S1097-2765(00)80259-2
https://doi.org/10.1073/pnas.160257997
https://doi.org/10.1073/pnas.160257997
https://doi.org/10.1073/pnas.160257997
https://doi.org/10.1073/pnas.160257997
https://doi.org/10.1103/PhysRevLett.75.1691
https://doi.org/10.1103/PhysRevLett.75.1691
https://doi.org/10.1103/PhysRevLett.75.1691
https://doi.org/10.1103/PhysRevLett.75.1691
https://doi.org/10.1103/PhysRevLett.78.994
https://doi.org/10.1103/PhysRevLett.78.994
https://doi.org/10.1103/PhysRevLett.78.994
https://doi.org/10.1103/PhysRevLett.78.994
https://doi.org/10.1103/PhysRevA.26.1589
https://doi.org/10.1103/PhysRevA.26.1589
https://doi.org/10.1103/PhysRevA.26.1589
https://doi.org/10.1103/PhysRevA.26.1589



