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Fetal liver (FL) is an intricate and highly vascularized hematopoietic organ, which can support the extensive expansion of
hematopoietic stem cells (HSCs) without loss of stemness, as well as of the downstream lineages of HSCs. This powerful
function of FL largely benefits from the niche (or microenvironment), which provides a residence for HSC expansion. Numerous
studies have demonstrated that the FL niche consists of heterogeneous cell populations that associate with HSCs spatially and
regulate HSCs functionally. At the molecular level, a complex of cell extrinsic and intrinsic signaling network within the FL
niche cells maintains HSC expansion. Here, we summarize recent studies on the analysis of the FL HSCs and their niche, and
specifically on the molecular regulatory network for HSC expansion. Based on these studies, we hypothesize a strategy to obtain

a large number of functional HSCs via 3D reconstruction of FL organoid ex vivo for clinical treatment in the future.
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INTRODUCTION bone marrow (BM) to maintain lifelong hematopoiesis (Or-

Hematopoiesis is a highly hierarchical system, among which
hematopoietic stem cells (HSCs) reside at the apex of the
hierarchy. HSCs are capable of replenishing themselves and
producing all mature blood lineages. During mammalian
embryogenesis, the first bona fide HSC is generated from
hemogenic endothelium in the aorta-gonad-mesonephros
(AGM) region via endothelial-to-hematopoietic transition
(EHT) (Bertrand et al., 2010; Boisset et al., 2010; Kissa and
Herbomel, 2010). In addition, HSCs are also detected in the
vitelline artery, umbilical artery, head and placenta (de Bruijn
et al., 2000; Dzierzak and Robin, 2010; Li et al., 2012). Then,
HSCs will migrate to FL through blood circulation. FL is the
major site for embryonic HSC expansion (Ema and Na-
kauchi, 2000). Finally, HSCs will colonize into the thymus to
commit lymphocyte specification, as well as home to the
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kin and Zon, 2008).

The goal of hematopoiesis studies is not only to elucidate
the developmental trajectory of blood cells, but also to pro-
vide useful insights for treatment of malignant blood dis-
eases. For instance, HSC transplantation (HSCT) is
considered the most effective method to cure malignant
blood diseases (Felfly and Haddad, 2014; Zhao et al., 2016),
but the limited source (mainly from BM) of suitable HSCs
seriously impedes its wide application. Compared to BM, FL
possesses a much more enhanced ability to support HSC
expansion, which is an ideal model to investigate HSC ex-
pansion in vitro. Therefore, it is essential to fully understand
the cellular and molecular mechanisms of HSC expansion in
FL.

In this review, we firstly introduce FL HSC expansion and
the FL niche, including a complex of components of niche
cells and their association with HSCs. Next, we summarize
signaling pathways involved in FL HSC expansion. Finally,
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we propose several open questions to be addressed in this
field.

HEMATOPOIETIC CELL EXPANSION IN FL

During embryogenesis, FL acts as a major site for HSC ex-
pansion. Through transplantation assays, Ema and Nakauchi
found that HSC activities cannot be detected in FL until E12
(Ema and Nakauchi, 2000). Then, FL. HSCs experience a
dramatic expansion process (Mikkola and Orkin, 2006).
Eventually, HSCs will expand up to the maximal quantity at
E16.5; thereafter, the quantity of HSCs will decrease due to
their mobilization out of FL (Gekas et al., 2005; Morrison et
al., 1995). Moreover, several groups found that the immature
HSC precursors (pre-HSCs), which are generated in the
AGM region (Medvinsky and Dzierzak, 1996), will colonize
into FL for maturation. Combined with transplantation as-
says, limiting dilution analysis and cells/organ culture, they
demonstrated that a number of pre-HSCs will rapidly mature
into definitive HSCs and form a large HSC pool in FL. This
may explain why FL has a dramatic increase of HSCs at E12
(Kieusseian et al., 2012; Rybtsov et al., 2016).

In addition to HSC expansion, FL is also a site for ex-
pansion of downstream lineage cells of HSCs. The erythroid
progenitors exhibit robust expansion during E12.5 to E18.5
in FL (Porayette and Paulson, 2008). Moreover, the proper
expansion of myeloid and lymphoid lineage cells is very
important for tissue homeostasis. Functional natural killer
(NK) cells are generated by NK-cell progenitors (NKP)
which emerge in E13.5 and expand during E14.5 and E15.5
in FL (Tang et al., 2012). Additionally, macrophages also
show a powerful expansion in FL during E12.5-E14.5 and
expand up to the peak at E14.5 (Hoeffel et al., 2015). Taken
together, FL is a major site for the expansion of HSCs and
their derivatives during embryogenesis.

THE PURIFICATION OF FL HSCS

AAA4.1, a type of cell-surface glycoprotein, is the first cell
surface marker used to isolate HSCs from mouse FL and
AA4.1" cell population occupies 0.5%—1% FL cells (Jordan
et al., 1990). Meanwhile, Weissman and his colleagues also
purified mouse FL. HSCs using combinatorial markers. They
firstly found that mouse FL HSCs are enriched in the Thy-1"
Lin Sca-1" cell population (occupied 0.05% FL cells) (Ikuta
et al., 1990). Then, c-Kit, Mac-1 and CD4 were proposed to
purify Thy-1° Lin~ Sca-1" FL HSCs (Ikuta and Weissman,
1992; Morrison et al., 1995). Besides, 7% of Lin~ Sca-1" c-
Kit" (LSK) AA4.1" cell population expresses Tie-2 that is the
receptor of tyrosine kinase, and LSK AA4.1" Tie-2" cells
have the long-term multilineage reconstitution ability (Hsu et
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al., 2000). In 2006, Morrison group enhanced the purifica-
tion of mouse FL HSCs using signaling lymphocyte activa-
tion molecule (SLAM) family markers, including CD150
and CD48. They found that SLAM family markers have the
similar expression pattern in FL. HSCs compared with adult
BM HSCs. The efficiency of purification with CD150"
CD48 Sca-1" Lin° Mac-1" combination is significantly im-
proved (Kim et al., 2006), and now it becomes a commonly
used method to obtain purified FL HSCs. Additionally,
EPCR" FL LSK and Flt-3™ FL cells also possess HSC
characteristics (Iwasaki et al., 2010; Zeigler et al., 1994).
Interestingly, there are also some markers that are differently
expressed between FL HSCs and BM HSCs in mice (Bau-
mann et al., 2004; Kim et al., 2005). For instance, CD144
(also known as Cdh5), a classic cadherin on vascular en-
dothelial cells, has been demonstrated to be transiently ex-
pressed in FL HSCs from E13.5 to E16.5. This finding also
implies the close relationship between vascular endothelial
cells and hematopoietic cells (Kim et al., 2005). Collectively,
these studies contribute to purifying authentic HSCs from
FL, and isolation of purified HSCs is the prerequisite to
investigate the expansion of HSCs.

THE FL NICHE MODULATES HSC
EXPANSION

The number of primary HSCs (from FL or BM) is very
limited, and these isolated HSCs need to be cultured in vitro
for both basic research and clinic treatment (i.e. HSCT).
Hence, it is crucial to comprehend the detailed process of
HSC expansion in vivo. Given that FL HSCs undergo rapid
expansion and still maintain complete stemness, the FL niche
serves as a paradigm for HSC expansion studies.

Mounting evidence has demonstrated that hepatic pro-
genitors, stromal cells, pericytes and endothelial cells in
mouse FL are the crucial niche cells for the expansion of
HSCs (Khan et al., 2016; Swain et al., 2014). Zhang et al.
identified a specific cell population: CD3" Ter119™ stromal
cells which can yield insulin-like growth factor 2 (IGF-2) to
support long-term HSC expansion (Zhang and Lodish,
2004). Moreover, they also found that angiopoietin-like 2
(Angptl2) and angiopoietin-like 3 (Angptl3) secreted by the
CD3" FL stromal cells can facilitate 24- and 30-fold ex-
pansion of HSCs after culture in vitro. More importantly,
Angptl2, Angptl3 and IGF-2 can be added into the medium
as small molecules to promote HSC expansion (Zhang et al.,
2006). Furthermore, a co-culture system using SCF" DLK"
FL hepatic progenitors has been developed, and it has been
shown to be able to support the expansion of HSCs during in
vitro culture (Chou and Lodish, 2010). Specifically, the SCF"
DLK" cells can secret growth factors, including stem cell
factor (SCF), IGF-2, Angptl3, and C-X-C motif chemokine
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ligand 12 (CXCL12), which are important for mouse FL
HSC expansion. Moreover, Zhao et al. found that ATF4-
expressed FL stromal cells also have the positive impact on
the expansion of FL HSCs (Zhao et al., 2015).

Interestingly, the group led by Paul Frenette systematically
analyzed the spatial association between FL. HSCs and niche
cells, and found that FL. HSCs had a close physical asso-
ciation with portal vessel and Nestin® NG2" pericytes, and
about 40% FL HSCs reside within 20 um of portal vessels
(Gao et al., 2018; Khan et al., 2016). Besides, Nestin" peri-
cytes can produce growth factors such as SCF, secreted
phosphoprotein 1 (Sppl), IGF-2, Angptl2 and CXCL12 to
support HSC expansion (Figure 1). They also dissected the
intricate vascular network and generated the three-dimen-
sional (3D) reconstruction of FL vasculature. In addition,
they found that the expression of growth factors (SCF,
Angptl2, IGF-2), presents similar levels from E12.5 to
E14.5, but the vascular structure extends obviously accom-
panied with the HSC expansion in FL. Using this model, they
further emphasized that the extension of niche structure may
govern the HSC expansion.

THE NETWORK OF SIGNALING PATHWAYS
REGULATES HSC EXPANSION

To deeply elucidate why FL can provide an extremely sui-
table niche for HSC expansion, it is necessary for us not only
to identify the niche cells surrounding HSCs, but also to
define how exactly the complicated network of signaling
pathways in FL niche impacts HSC expansion.

Growth factors

Accumulating data show that HSCs can be maintained ex
vivo with addition of combinations of growth factors, in-
cluding SCF, FIt-3 ligand and interleukin family (Metcalf,
2008). SCF is a widely-used growth factor to promote HSC
expansion. Its receptor, c-Kit, resides at the membrane of
stem cells (Flanagan and Leder, 1990; Williams et al., 1990).
The binding of SCF to its receptor will trigger the down-
stream signaling cascades, such as MEK/ERK and PI3K/Akt
kinase signaling pathways (Edling and Hallberg, 2007), and
further upregulate the expression of expansion-associated
regulators (Munugalavadla et al., 2005; Xie et al., 2014).
Additionally, SCF/c-Kit signaling pathway is also engaged in
sustaining the HSC survival via anti-apoptosis pathway (Li
and Johnson, 1994). Zayas et al. revealed that tr-Kit, a
truncated form of c-Kit, is restrictedly expressed in cell po-
pulations enriched for HSCs and MPPs of FL. and BM, and
exerts functions in a SCF-dependent manner. In view of the
specific expression of tr-Kit, more phenotypic HSCs can be
isolated for in vitro culture (Zayas et al., 2008). Furthermore,
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the multiple origins of SCF have been well demonstrated in
the adult BM niche in which different cell-derived SCF plays
distinct roles in regulating HSCs (Ding et al., 2012; Zhou et
al., 2017). Given that the niche components of FL are distinct
from BM as well as their corresponding HSCs (Crane et al.,
2017; Morrison and Scadden, 2014; Swain et al., 2014), we
speculate that the similar strategy can be adopted to uncover
the exact mechanism of how a particular niche cell-specific
SCF regulates FL HSC expansion.

Previous studies indicated that HSCs are able to expand
when co-cultured with FL cells in medium (Chou and Lod-
ish, 2010). Further analyses unravel that growth factors
produced by the co-cultured cells are the major cause of HSC
expansion. IGF-2 is generated by mouse FL CD3" Ter119"
cell population and can promote HSC expansion. Mechan-
istically, a high concentration of IGF-2 binds to the receptors,
IGF1R, IR and IGF2R, and activates the downstream sig-
naling cascades. On the one hand, IGF-2, along with SCF
and thrombopoietin (TPO), activates mitogen-activated
protein kinase (MAPK) and phosphatidylinositol-3 kinase
(PI-3K) pathways to facilitate HSC expansion. On the other
hand, IGF-2 may prevent HSCs from apoptosis (Zhang and
Lodish, 2004). Moreover, FL CD3" cells are also reported to
secrete Angptl2 and Angptl3, which could stimulate HSC
expansion. Thus, the growth factors combination can achieve
a higher efficiency to increase the number of HSCs, but the
downstream signaling pathways triggered by Angptl2/3 re-
main to be discovered (Zhang et al., 2006). Recently, the
receptor of ANGPTL proteins, leukocyte immunoglobulin
(Ig)-like receptor B2 (LILRB2), was identified in human and
is able to support HSC expansion in vitro (Zheng et al.,
2012). Furthermore, Lin et al. showed that ANGPTL2 fa-
cilitates the NOTCH receptor cleavage through binding of
LILRB2, and then activates intranuclear target genes, in-
cluding MYC and RUNXI. The activation of MYC expres-
sion could explain why HSCs expand ex vivo with the
addition of Angptl2 (Lin et al., 2015). However, it was still
unclear which upstream regulators can modulate the synth-
esis of Angptl proteins. To this end, Cheng and his collea-
gues demonstrated that ATF4 has a critical role in FL to
support HSC expansion and further analysis indicates that
ATF4 can regulate Angptl/3 transcription through extrinsic
regulation to maintain HSC expansion (Zhao et al., 2015).

Notch signaling

Hackney et al. performed the first global analysis to char-
acterize mouse FL stromal-derived signaling pathways at the
molecular level and described the first molecular profile of
stroma cell line, the well-known stroma cell line, AFT024. A
number of novel candidate signaling molecules were iden-
tified; among them, Notch was verified to regulate HSC
maintenance and homeostasis (Coskun and Hirschi, 2010;
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Figure 1 (Color online) The fetal liver niche regulates HSC expansion. A schematic diagram of the fetal liver (FL) niche. Vascular endothelial cells,
pericytes, stromal cells and hepatic progenitors are the major niche cells that can modulate HSC extensive expansion through producing growth factors, such
as IGF-2, Angptl2/3, SCF and CXCL12. These cell-extrinsic factors will trigger intracellular signaling pathways and stimulate HSC expansion. Angptl2/3,

angiopoietin-like 2/3;. CV, central vein; PV, portal vessel.

Hackney et al., 2002). Notch signaling pathway is mediated
by the cell-cell contact and is engaged in diverse biological
processes. In mouse FL, He et al. revealed that the balanced
level of Notch signaling regulated by BLOS2 is indis-
pensable for HSC homeostasis. Over-activated Notch sig-
naling will augment the frequency of HSCs, whereas disturb
their self-renewal ability (He et al., 2017). Besides, Notch1/
Rbpj/Maml trimolecular transcription complex is involved in
mouse FL HSCs homeostasis. It implies that the appropriate
threshold of signaling activation and dynamic regulation are
critical for HSC homeostasis and maintenance (Gerhardt et
al., 2014). Moreover, Cited2 (cAMP-responsive element
binding protein), as a transcriptional modulator, plays an
important role in mouse FL. HSC expansion as well as in the
maintenance of hematopoietic homeostasis through hypoxic
response and Notch signaling (Chen et al., 2007).

Epigenetic regulation

Epigenetic regulation is an indispensable mechanism to
regulate HSC expansion. BAF250a, a component of the
SWI/SNF-BAF chromatin remodeling complex, plays an
extrinsic role to establish and maintain definitive HSCs in
mouse FL (Krosl et al., 2010). BRPF1 can regulate multi-
potent genes expression, including Gfil, Hoxa9, and Gata3,
through acetylation of histone H3 at lysine 23 and plays an
essential role in definitive hematopoiesis in FL (You et al.,
2016). EZH2, a key member of PRC2, is required for HSCs
maintenance in mouse FL through regulating expression of

cell cycle genes in a methyltransferase-dependent manner
(Mochizuki-Kashio et al., 2011). Although the detailed
molecular mechanisms are different individually, all these
signaling pathways mediated by epigenetic modifiers can
guarantee that HSCs have a stable and normal maturation,
expansion, differentiation and migration in FL.

COMPREHENSIVE OMICS PROFILING OF FL
AND HSC ONTOGENY

To systematically understand the underlying mechanisms of
how FL supports HSC expansion, various omics approaches
have been applied to study mouse FL. HSCs and their niche at
both transcriptional and protein levels.

Zhang group firstly performed a systemic analysis of
mouse FL gene expression via high-density oligonucleotide
microarrays (Li et al., 2009). The results showed that FL at
different developmental stages present different gene ex-
pression pattern. Specifically, E11.5-E14.5 FL highly ex-
presses cell-cycle and cell division genes, such as mRNA
processing, transcription, ribosome biogenesis and transla-
tion. E14.5-E18.5 FL shows high expression of genes as-
sociated with FL function, such as biosynthetic process and
signal transduction, while the genes involved in innate im-
mune response are enriched in neonatal FL. They showed
that the gene expression of FL presents a dynamic variation,
which will helps us understand the mechanism of FL onto-
geny (Li et al., 2009). Furthermore, Daley and his colleagues
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performed the transcriptome analysis using HSCs derived
from different hematopoietic sites in mice, including
AGM, placenta, YS, ESCs, FL (E12.5-14.5) and BM
(McKinney-Freeman et al., 2012). They found that em-
bryonic HSCs can be divided into three groups, including
YS-Like, specifying HSC and definitive HSCs. Among
them, FL. HSCs belong to the group of definitive HSCs and
highly express expansion-related genes, whereas Fos and
Fosb that negatively control cell cycle progression are
downregulated in FL. HSCs. The detailed characterization of
transcriptional landscape of FL and HSCs ontogeny is es-
sential to understand the mechanism of HSC expansion in FL
(McKinney-Freeman et al., 2012).

Additionally, systemic proteomics analysis is crucial for
uncovering the functional effects in FL HSC expansion.
Hansson group comprehensively characterized the proteome
of mouse FL HSCs using the spectrometry-based quantita-
tive proteomics method (Jassinskaja et al., 2017). As a result,
they found that anabolic signaling pathways are enriched in
FL HSCs, such as glycogen synthesis and lipid synthesis.
This finding suggests that high level of metabolism may
contribute to the rapid expansion of HSCs. Meanwhile, FL
HSCs show low level of proteins involved in antioxidative
process, which implies that FL. HSCs are more sensitive to
high level of ROS (Jassinskaja et al., 2017).

Single cell RNA sequencing makes it possible to construct
a precise cell atlas for any tissues/organs and even a whole
organism. Very recently, Guo group constructed the E14.5
FL cell atlas using 3,730 single cells (Han et al., 2018).
Based on the atlas, they detected 3,124 genes, identified 11
cellular clusters, and the complex cellular component of FL
was revealed through this atlas, including the cell classifi-
cation, cell proportion of each cellular cluster and the sig-
nature genes of each cell type. The construction of cell atlas
at the organ level improves our understanding about the FL
cell types, as well as their function associated with HSCs.

Taken together, all these omics approaches provide deep
insights into the transcriptional landscape and proteomics
analysis of HSCs and FL niche cells. This will help us
comprehensively understand FL and HSCs ontogeny, and
uncover the underlying mechanism of HSC expansion in FL.

REMAINING QUESTIONS

The studies on FL as being a potent hematopoietic organ,
began in the 1960s with the demonstration of its recon-
stitution ability (Kubanek et al., 1969). In the past decades,
many fancy and highly sensitive techniques have been ap-
plied to dissect and map the FL niche, the spatial location of
HSCs, as well as key signaling pathways that regulate HSC
expansion. In addition, several outstanding questions remain
to be addressed: (i) Given that HSCs expand rapidly in FL
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but maintain quiescent in BM, it is unknown which factors
trigger this transition; (ii) how to reconstruct the FL organoid
in vitro using the advanced techniques to acquire sufficient
functional HSCs for clinical use.

FL HSCs maintain active expansion, whereas BM HSCs
generally keep quiescence. Two important hematopoietic
organs endow HSCs distinct characteristics. Therefore, it is
intriguing to uncover the underlying mechanism of how
these differences occur. The BM niche has been convin-
cingly demonstrated to be essential for the maintenance of
BM HSCs. Through direct confocal imaging and functional
assays, BM HSCs are illustrated residing at a specialized
niche. Morrison group found that about 85% HSCs are as-
sociated with sinusoids in mouse BM (Acar et al., 2015).
Moreover, Frenette group demonstrated that arteriolar niche
plays an important role in maintaining mouse BM HSC
quiescence (Kunisaki et al., 2013). These studies suggest that
BM HSCs associate with specific vascular niche to maintain
their characteristics. In contrast, FL. HSCs get close to the
portal vessel to sustain their activity (Khan et al., 2016).
Collectively, different niches may contribute to different
characteristics of HSCs. Moreover, although both BM HSCs
and FL HSCs can respond to growth factors, such as SCF and
CXCL12, the different intracellular signaling pathway trig-
gered by the same growth factors may result in different cell
behavior (Boulais and Frenette, 2015; Crane et al., 2017;
Morrison and Scadden, 2014).

In addition to the cell-extrinsic differences, there are also
cell-intrinsic differences between FL. and BM HSCs. View-
ing from the phenotypic difference, FL HSCs exhibit higher
expression of the genes involved in oxidative phosphoryla-
tion, cell expansion and the citric acid cycle to fuel the ability
of extensive expansion than BM HSCs (Manesia et al.,
2015), Furthermore, FL HSCs possess more mitochondria
compared with BM HSCs (Manesia et al., 2015; McKinney-
Freeman et al., 2012). The dynamic metabolic demands are
responsible for HSC expansion and homeostasis. Regarding
the functional differences, FLL. HSCs exhibit faster rate of
expansion and higher reconstruction ability in transplanted
recipient mice than BM HSCs. Moreover, the proportion of
myeloid lineage output of transplanted FLL HSCs in re-
cipients show higher than that of BM HSCs (Arora et al.,
2014; Harrison et al., 1997; Szilvassy et al., 2001). Collec-
tively, these differences may be attributed to, at least part of,
cell-intrinsic factors rather than the niche to drive FLHSC
expansion.

Systematic investigation of an organ is extremely crucial
for a full understanding of the regulatory mechanisms that
maintain organ function and homeostasis. The complex
spatial structure of FL, as well as low efficient methods in the
past, hampered our abilities to fully characterize the FL.
However, with the advancement of interdisciplinary re-
search, more advanced approaches are developed to gain a
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Figure 2 (Color online) Three-dimensional reconstruction of the FL organoid for HSC expansion. A schematic diagram of HSC expansion via an artificial
FL organoid. Through mimicking the structure of FL niche in vivo, the FL organoid is generated with the help of three-dimensional reconstruction techniques.

The artificial FL organoid will provide an ideal platform for HSC expansion.

deeper insight into the spatial structure of niche and HSC
expansion in FL. The low-input and high-throughput omics
analysis represented by single-cell RNA-sequencing (Treu-
tlein et al., 2014), have helped redefine the previously un-
known cell-types, which have been largely ignored in cell-
population based studies. The more cell types are identified,
the more definitive it is for us to fully comprehend the FL
cells atlas. The current single-cell expression profiling ana-
lysis includes Drop-sequencing (Macosko et al., 2015), CEL-
sequencing (Griin et al., 2014; Griin and van Oudenaarden,
2015), and Microwell-sequencing (Han et al., 2018). How-
ever, the limitation of these methods is to dissect FL cells at
two-dimensional (2D) level, whereas the in situ spatial in-
formation remains elusive. Interestingly, GEO-sequencing
and Tomo-sequencing have been developed to investigate
the spatial pattern of gene expression. The spatial genome-
wide transcriptome analysis, combined with the positional
information of specific cells, contribute to 3D visualization
of a certain tissue or organ (Chen et al., 2017; Peng et al.,
2016). These excellent techniques derived from a crosstalk
of multiple disciplines will make it possible to establish the
spatial network of signaling pathways and spatial vascular
network within the FL niche, and even for 3D reconstruction
of a whole FL organ.

The bottleneck for successful artificial FL organoid is the
functional vascular network and the precise orchestration
between FL niche cells. Interestingly, an important ad-
vancement in tissue engineering field is the design of bio-
scaffold. The extracellular matrix (ECM), including the
components of structural and functional proteins, has be-
come the popular three-dimensional scaffold for tissue re-
construction (Badylak, 2002). Moreover, Baptista et al.
developed a new bio-scaffold for bioengineered liver via a
decellularization process, and a significant advance of this
bio-scaffold is to protect the macrovascular skeleton and
allow the niche cells easily enter (Baptista et al., 2011). Liver
cells, endothelial cells and stromal cells can enter the scaf-
fold and reseed the vascular network to realize the functional
artificial FL organoid. Besides, several studies suggested that
the recapitulation of the dynamic cellular organization and

cellular interaction of human FL cells during the organo-
genesis would stimulate the cellular self-organizing ability to
promote the generation of organoid (Szpinda et al., 2015;
Takebe et al., 2012). Based on these studies, we hypothesize
that the artificial FL organoid takes advantage of the decel-
lularized bio-scaffold, primitive niche cells and optimized
culture condition to precisely mimic organogenesis, there-
fore the artificial FL organoid will play an important role in
HSC expansion and drug discovery.

Taken together, all these techniques greatly improve our
understanding on the nature of FL HSC expansion in vivo
and are proposed to help produce a large number of func-
tional HSCs for clinical applications (Figure 2).

CONCLUSION

In summary, we review the current knowledge about the FL
niche, which is engaged in HSC expansion. With the help of
novel techniques, scientists revealed the spatial structure of
vasculature and its close association with FL HSCs (Khan et
al., 2016). These evolving views and emerging techniques
will greatly facilitate our understanding on the crosstalk
between the FL niche and HSC expansion, as well as help to
bridge the gap from bench to bedside. For example, further
investigation is required to recapitulate the FL organ in vivo
to establish a FL-like culture condition, and even to establish
an artificial FL organoid, for HSC expansion in clinical ap-
plications.
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