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a b s t r a c t 

Cooperation is a mysterious phenomenon which is observed in this world. The potential explanation is 

a repeated interaction. Cooperation is established if individuals meet the same opponent repeatedly and 

cooperate conditionally. Previous studies have analyzed the following four as characters of conditional co- 

operators mainly. (i) niceness (i.e., when a conditional cooperator meets an opponent in the first place, he 

(she) cooperates or defects), (ii) optimism (when a conditional cooperator meets an opponent in the past, 

but he (she) did not get access to information about the opponent’s behavior in the previous round, he 

(she) cooperates or defects), (iii) generosity (even when a conditional cooperator knows that an opponent 

defected in the previous round, he (she) cooperates or defects) and (iv) retaliation (a conditional coop- 

erator cooperates with a cooperator with a higher probability than with a defector). Previous works deal 

with these four characters mainly. However, these four characters basically have been regarded as distinct 

topics and unified understanding has not been done fully. Here we, by studying the iterated prisoner’s 

dilemma game (in particular, additive games) and using evolutionarily stable strategy (ESS) analysis, find 

that when retaliation is large, the condition under which conditional cooperators are stable against the 

invasion by an unconditional defector is loose, while none of “niceness”, “optimism”, and “generosity”

makes impact on the condition under which conditional cooperators are stable against an invasion by an 

unconditional defector. Furthermore, we show that we can understand “niceness”, “optimism”, and “gen- 

erosity” uniformly by using one parameter indicating “cooperative”, and when the conditional cooperators 

have large “retaliation” enough to resist an invasion by an unconditional defector, natural selection favors 

more “cooperative” conditional cooperators to invade the resident conditional cooperative strategy. More- 

over, we show that these results are robust even when taking the existence of mistakes in behavior into 

consideration. 

© 2016 Elsevier Inc. All rights reserved. 
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1. Introduction 

The existence of cooperation demands explanation [4,17,33,49] .

One of the potential explanations for this mysterious phenomenon

is a repeated interaction. Previous studies have revealed that coop-

eration is established if the interaction between the same individ-

uals repeats and individuals cooperate conditionally based on the

opponent’s behavior [4,26,34,35,49] (but see also [9,25] ). 

Previous studies have analyzed the following four as charac-

ters of conditional cooperators mainly. (i) niceness (i.e., when a

conditional cooperator meets an opponent in the first place, he

(she) cooperates or defects [3,4,6,11,36,44,48,51,52,56] ) (ii) opti-

mism (when a conditional cooperator meets an opponent in the
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ast, but he (she) did not get access to information about the op-

onent’s behavior in the previous round, he (she) cooperates or

efects [5,22,23,25] ). (iii) generosity (even when a conditional co-

perator knows that an opponent defected in the previous round,

e (she) cooperates or defects [34] ) (iv) retaliation (a conditional

ooperator cooperates with a cooperator with a higher probability

han with a defector [4,49] ). Previous works deal with these four

haracters mainly. However, these four characters basically have

een regarded as distinct topics and have been analyzed separately.

nd unified understanding has not been done fully. Here, we raise

wo questions: one is “How the conditional cooperators behave in

hese four situations facilitates the evolution of cooperation?” and

he other is “Is unified understanding possible?” We examine these

n this paper. 

The rest of this paper is structured as follows. In Section 2 , we

escribe a model and by using evolutionarily stable strategy (ESS)

nalysis, examine how conditional cooperators behave facilitates

http://dx.doi.org/10.1016/j.mbs.2016.09.012
http://www.ScienceDirect.com
http://www.elsevier.com/locate/mbs
http://crossmark.crossref.org/dialog/?doi=10.1016/j.mbs.2016.09.012&domain=pdf
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he evolution of cooperation most. In Section 3 , we extend Model

 to more general model which takes the existence of mistakes in

ehavior into consideration, and examine if the result obtained in

odel 1 section is robust or not. In Section 4 , we summarize the

esults and suggest some future works to be undertaken. 

. Model 1 

Consider the iterated prisoner’s dilemma game in which two in-

ividuals have to either cooperate or defect in each round. We as-

ume that individuals are paired randomly, and assume that there

s no age structure (see [30] for a work dealing with age structured

opulation.). The probability that the individuals interact over t

imes in a given pair is w 

t , where 0 < w < 1 holds true. This

ssumption means that the expected number of interactions is

/(1 −w ). An individual who cooperates will give an opponent an

mount b at a personal cost of c , where b > c > 0. An individ-

al who defects will give nothing. Furthermore, we consider the

ase wherein information is imperfect. We introduce a parameter

 and let the parameter e denote the probability that information

s somehow blocked, i.e., that an individual cannot get access to

he information about an opponent’s behavior, where 0 ≤ e ≤ 1. 

We consider two strategies: unconditional defection (ALLD) and

eactive strategy (R s , a , p , z ), which is an extension of earlier works

4,22,25] . ALLD defects no matter what the opponent does. R s , a , p , z 

ooperates with probability s (0 < s ≤ 1) in the first move and in

he following rounds, R s , a , p , z cooperates with probability p + z if

 s , a , p , z can get access to information about the opponent’s behav-

or and the opponent cooperated in the previous round, and co-

perates with probability p if R s , a , p , z can get access to information

bout the opponent’s behavior and the opponent defected in the

revious round. If R s , a , p , z cannot get access to information about

he opponent’s behavior, R s , a , p , z cooperates with probability a (0 ≤
 ≤ 1). 

Here, s can be regarded as the index of “niceness”. As the pa-

ameter s increases, the player trusts the opponent more and coop-

rates with the opponent in the first meeting with a higher prob-

bility. Similarly, a can be regarded as the index of “optimism”. As

he parameter a increases, the player cooperates with the oppo-

ent with a higher probability when the individuals does not get

nformation about the opponent’s behavior in the previous round.

imilarly, p can be regarded as the index of “generosity”. As the pa-

ameter p increases, the player cooperates with an opponent with

 higher probability even when the opponent defected in the pre-

ious round (of course, when the opponent cooperated in the pre-

ious round). Similarly, z can be regarded as the index of “retalia-

ion”. As the parameter z increases, the player retaliates more for

he opponent’s behavior. Note that ALLD is the same as R s , a , p , z in

he case wherein s = a = p = z = 0 holds true. 

Here, we consider the game between R s , a , p , z and ALLD. We

pecify the condition under which R s , a , p , z is a strict ESS against

n invasion of ALLD. After algebraic calculation, it is shown that

he condition under which R s , a , p , z is an ESS against an invasion of

LLD (i.e., R s , a , p , z ’s payoff against itself is larger than R s , a , p , z ’s pay-

ff against ALLD) is 

wz ( 1 − e ) − c > 0 . (1)

This inequality becomes a special case of inequality ( 3 ) in

22] when substituting z = 1 into ( 1 ). This inequality ( 1 ) indicates

hat when retaliation ( z ) is large, it is likely that R s , a , p , z is an ESS

gainst an invasion of ALLD. And it is also apparent that inequal-

ty ( 1 ) does not contain s, a or p , which means that the parameter

, a , and p makes no impact on the condition under which R s , a , p , z 

s an ESS against an invasion of ALLD. The condition under which

 s , a , p , z is not invaded by unconditional defectors is neither affected

y whether conditional cooperators cooperate or defect in the first
eeting nor affected by whether conditional cooperators cooper-

te or defect when information is not available or by whether

onditional cooperators cooperate or defect when information is

vailable. 

Next, we consider the game between R s 1, a 1, p 1, z and R s 2, a 2, p 2, z 

here R s 1, a 1, p 1, z cooperates in the first round with probability s 1 
nd cooperates in the following round with probability a 1 when

nformation is unavailable in the previous round and cooperates

ith probability p 1 +z if R s 1, a 1, p 1, z can get access to information

bout the opponent’s behavior and the opponent cooperated in the

revious round, and cooperates with probability p 1 if R s 1, a 1, p 1, z can

et access to information about the opponent’s behavior and the

pponent defected in the previous round while R s 2, a 2, p 2, z cooper-

tes in the first round with probability s 2 and cooperates in the

ollowing round with probability a 2 when information is unavail-

ble in the previous round and cooperates with probability p 2 +z

f R s 2, a 2, p 2, z can get access to information about the opponent’s be-

avior and the opponent cooperated in the previous round, and co-

perates with probability p 2 if R s 2, a 2, p 2, z can get access to informa-

ion about the opponent’s behavior and the opponent defected in

he previous round, respectively. 

After algebraic calculation (see Appendix A for detailed calcu-

ation), it is shown that the condition under which R s 1, a 1, p 1, z is an

SS against an invasion of R s 2, a 2, p 2, z is 

 

bwz ( 1 − e ) − c ] 

[
s 1 + 

w 

1 −w 

e a 1 + 

w 

1 −w 

( 1 − e ) p 1 
1 

1 −w 

− s 2 + 

w 

1 −w 

e a 2 + 

w 

1 −w 

( 1 − e ) p 2 
1 

1 −w 

]
> 0 . (2) 

This inequality becomes a special case of inequality ( 5 ) in

25] when substituting s 1 =s 2 =1, p 1 =p 2 =0, and z=1 into ( 2 ).

ere, let us define v as 

 ≡
[ 

s + 

w 

1 − w 

ea + 

w 

1 − w 

( 1 − e ) p 
] 
/ 

[ 
1 

1 − w 

] 
. (3) 

How can the parameter v be interpreted? The expected number

f interactions is given as 1/(1 −w ) as mentioned above. Among

he number of interactions, 1/(1 −w ), the number of interactions

herein R s , a , p , z cooperates even when the conditional coopera-

ors do not observe cooperation by the opponent is given as

 + 

w 

1 −w 

ea + 

w 

1 −w 

( 1 − e ) p because of the definition of s, a , and p .

ence, the parameter v can be interpreted as the probability that

ven when the conditional cooperators do not observe cooperation

y the opponent, they cooperate on average. Therefore, the param-

ter v can be regarded as the index of ‘“cooperative”’. As the pa-

ameter v increases, the player becomes more “cooperative”. It has

lso been found that the parameter v is over 0 and not more than

 because of the domains of the parameter ( a, s, p ). Here, let us

efine v 1 and v 2 , respectively, as 

 1 ≡
[ 

s 1 + 

w 

1 − w 

e a 1 + 

w 

1 − w 

( 1 − e ) p 1 

] 
/ 

[ 
1 

1 − w 

] 
(4) 

 2 ≡
[ 

s 2 + 

w 

1 − w 

e a 2 + 

w 

1 − w 

( 1 − e ) p 2 

] 
/ 

[ 
1 

1 − w 

] 
. (5) 

Here, using (4) and (5) , (2) becomes 

 

bwz ( 1 − e ) − c ] ( v 1 − v 2 ) > 0 (6) 

This inequality ( 6 ) indicates that when retaliation ( z ) is suffi-

ient (i.e., more strictly speaking, larger than c /[ bw (1 −e )]), more

cooperative” strategy than the resident strategy can invade, while

ess “cooperative” strategy than the resident strategy cannot in-

ade. On the other hand, this inequality ( 6 ) indicates that when

etaliation ( z ) is not sufficient (i.e., more strictly speaking, smaller

han c /[ bw (1 −e )]), less “cooperative” strategy than the resident
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strategy can invade, while more “cooperative” strategy than the

resident strategy cannot invade. The important parameter is only v ,

which includes the information of s, a , and, p . Each of parameters

( s, a, p ) is unnecessary in knowing the direction of the evolution. 

Combining ( 1 ) with ( 6 ), we know that in the situations wherein

retaliation ( z ) is large enough to resist the invasion by uncondi-

tional defectors, natural selection favors the reactive cooperators

which are more “cooperative” than the resident strategy to invade

the resident strategy. 

3. Model 2 

In Section 2 , we consider the case wherein mistakes in behav-

ior are not present. However animals including humans are error-

prone [24,31] , and we take the existence of mistakes into consid-

eration in this section. The strategies we consider are the same as

ones we introduced in Model 1. We introduce a parameter μ and

let the parameter μ denote the probability that an individual who

intends to cooperate fails to do so, where 0 ≤ μ < 1. 

We specify the condition under which R s , a , p , z is a strict ESS

against an invasion of ALLD. After algebraic calculation, the con-

dition is that R s , a , p , z ’s payoff against itself is larger than R s , a , p , z ’s

payoff against ALLD, given as 

bwz ( 1 − e ) ( 1 − μ) − c > 0 . (7)

This inequality reduces to ( 1 ) when substituting μ= 0 into ( 7 ).

And, this inequality reduces to inequality ( 3 ) in [22] when sub-

stituting s = 0, p = 0, and z = 1 into ( 7 ). And we can find that the

existence of mistakes in behavior makes the condition more strin-

gent. 

Next, we consider the game between R s 1, a 1, p , z and R s 2, a 2, p , z . Af-

ter algebraic calculation (see Appendix B for detailed calculation),

it is shown that the condition under which R s 1, a 1, p , z is an ESS

against an invasion of R s 2, a 2, p , z is 

[ bwz ( 1 − e ) ( 1 − μ) − c ] 

[
s 1 + 

w 

1 −w 

e a 1 + 

w 

1 −w 

( 1 − e ) p 1 
1 

1 −w 

− s 2 + 

w 

1 −w 

e a 2 + 

w 

1 −w 

( 1 − e ) p 2 
1 

1 −w 

]
> 0 . (8)

This inequality reduces to inequality ( 5 ) in [25] when substitut-

ing s 1 =s 2 =1, p 1 =p 2 =0, and z=1 into ( 2 ). 

Here, using ( 4 ) and (5) , (8) becomes 

[ bwz ( 1 − e ) ( 1 − μ) − c ] ( v 1 − v 2 ) > 0 (9)

This inequality reduces to ( 6 ) when substituting μ= 0 into ( 9 ).

We stated that in the situations wherein retaliation ( z ) is large

enough to resist the invasion by unconditional defectors, natural

selection favors the reactive cooperators which are more “cooper-

ative” than the resident strategy to invade the resident strategy in

Model 1. Using ( 9 ), we can state that the result is robust even tak-

ing the existence of mistakes in behavior into consideration. 

4. Conclusion 

In Model 1, we, by using ESS analysis, find that when retaliation

is large (i.e., conditional cooperators cooperate with an individual

who cooperated in the previous round with a higher probability

than with an individual who defected in the previous round), the

condition under which conditional cooperators are stable against

the invasion by an unconditional defector is loose, while none

of “niceness (i.e., conditional cooperators cooperate in the first

move)”, “optimism (i.e., conditional cooperators cooperate with an

opponent when information about the opponent’s behavior in the
revious round is absent)”, and “generosity (i.e., conditional coop-

rators cooperate with an opponent even when the opponent de-

ected in the previous round)” makes impact on the condition un-

er which conditional cooperators are stable against an invasion

y an unconditional defector. Furthermore, we show that we can

nderstand “niceness”, “optimism”, and “generosity” uniformly by

sing one parameter indicating “cooperative”, and when the con-

itional cooperators have large “retaliation” enough to resist an in-

asion by an unconditional defector, natural selection favors more

cooperative” conditional cooperators to invade the resident strat-

gy. In Model 2, we have shown that these results are robust even

hen taking the existence of mistakes in behavior into considera-

ion. 

In this paper, we consider the case wherein payoffs are linear

i.e., the effects of behaviors are additive). Removing the assump-

ion may sway the result (see [1,2,23,24,37,47] for relevant works).

urther study on this issue is needed. 

In this paper, we consider a memory-one game (i.e., the game

n which the individuals remember the previous only one round).

e do not analyze long-memory strategies (i.e., strategies whose

emory length are more than 1 (e.g. [20,43] )), but it may be im-

ortant. 

This paper considers the interaction between two individu-

ls, however, some animals including humans, interact among

ore than the two individuals. In order to analyze such a

roup-wise interaction including group-wise cooperation, we have

o extend two player games which we used in this article to

 -player games [7,8,10,12,13–16,18,19,21,26–29,32,38–42,46,50,53–

5,57] . Further study on this issue might be interesting. 

This paper considers the following four characters: (i) niceness,

ii) optimism, (iii) generosity and (iv) retaliation. And we proposed

 simple model and we tried to understand the relevance of the

our main characters. 

cknowledgments 

This work was partially supported by Chinese Academy of

ciences President’s International Fellowship Initiative. Grant no.

016PB018. 

ppendix A 

roof for ( 2 ) 

In the first round, R s 1, a 1, p 1, z cooperates with probability s 1 ,

hile in the following rounds, R s 1, a 1, p 1, z cooperates with probabil-

ty (1 −e )( p 1 + z ) + ea 1 when the opponent cooperated in the last

ove and cooperates with probability (1 −e ) p 1 +ea 1 when the op-

onent defected in the last move. Similarly, in the first round,

 s 2, a 2, p 2, z cooperates with probability s 2 , while in the following

ounds, R s 2, a 2, p 2, z cooperates with probability (1 −e )( p 2 + z ) + ea 2 
hen the opponent cooperated in the last move and cooperates

ith probability (1 −e ) p 2 +ea 2 when the opponent defected in the

ast move. 

Now using (3. 41) in [45] , we can know that R s 1, a 1, p 1, z ’s payoff

gainst itself is given as 

( b − c ) 
(
s 1 + 

w 

1 −w 

( ( 1 − e ) p 1 + e a 1 ) 
)

( 1 − ( 1 − e ) wz ) 
. 

And we can also know, by using (3. 41) in [45] , that R s 2, a 2, p 2, z ’s

ayoff against R s 1, a 1, p 1, z is given as 

c 
( s 2 + s 1 ( 1 − e ) wz ) + 

w 
1 −w ( ( 1 − e ) ( p 2 + p 1 ( 1 − e ) wz ) +e ( a 2 + a 1 ( 1 − e ) wz ) ) 

( 1 + ( 1 − e ) wz ) ( 1 − ( 1 − e ) wz ) 

+ b 
( s 1 + s 2 ( 1 − e ) wz ) + 

w 
1 −w ( ( 1 − e ) ( p 1 + p 2 ( 1 − e ) wz ) + e ( a 1 + a 2 ( 1 − e ) wz ) ) 

( 1 + ( 1 − e ) wz ) ( 1 − ( 1 − e ) wz ) 

. 
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Hence, the condition under which R s 1, a 1, p 1, z ’s payoff against it-

elf is larger than R s 2, a 2, p 2, z ’s payoff against R s 1, a 1, p 1, z is given as

 2 ). This is the end of the proof. 

ppendix B 

roof for ( 8 ) 

In the first round, R s 1, a 1, p 1, z cooperates with probability

 1 (1 −μ), while in the following rounds, R s 1, a 1, p 1, z cooperates

ith probability ((1 −e )( p 1 + z ) + ea 1 )(1 −μ) when the opponent

ooperated in the last move and cooperates with probability

(1 −e ) p 1 + ea 1 )(1 −μ) when the opponent defected in the last

ove. Similarly, in the first round, R s 2, a 2, p 2, z cooperates with prob-

bility s 2 (1 −μ), while in the following rounds, R s 2, a 2, p 2, z cooper-

tes with probability ((1 −e )( p 2 + z ) + ea 2 )(1 −μ) when the oppo-

ent cooperated in the last move and cooperates with probabil-

ty ((1 −e ) p 2 + ea 2 )(1 −μ) when the opponent defected in the last

ove. 

Now using (3. 41) in [45] , we can know that R s 1, a 1, p 1, z ’s payoff

gainst itself is given as 

( b − c ) ( 1 − μ) 
(
s 1 + 

w 

1 −w 

( ( 1 − e ) p 1 + e a 1 ) 
)

( 1 − ( 1 − e ) ( 1 − μ) wz ) 
. 

And we can also know, by using (3. 41) in [45] , that R s 2, a 2, p 2, z ’s
ayoff against R s 1, a 1, p 1, z is given as 

c 
( 1−μ) ( s 2 + s 1 ( 1−e ) ( 1−μ) wz ) + w 

1−w ( ( 1−e ) ( 1−μ) ( p 2 + p 1 ( 1−e ) ( 1−μ) wz ) +e ( 1−μ) ( a 2 + a 1 ( 1−e ) ( 1−μ) wz ) ) 
( 1+ ( 1−e ) ( 1−μ) wz ) ( 1−( 1−e ) ( 1−μ) wz ) 

 b 
( 1−μ) ( s 1 + s 2 ( 1−e ) ( 1−μ) wz ) + w 

1−w ( ( 1−e ) ( 1−μ) ( p 1 + p 2 ( 1−e ) ( 1−μ) wz ) +e ( 1−μ) ( a 1 + a 2 ( 1−e ) ( 1−μ) wz ) ) 
( 1+ ( 1−e ) ( 1−μ) wz ) ( 1−( 1−e ) ( 1−μ) wz ) 

. 

Hence, the condition under which Rs1,a1,p1,z’s payoff against it-

elf is larger than Rs2,a2,p2,z’s payoff against Rs1,a1,p1,z is given as

8). This is the end of the proof. 
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