

Mitochondrial DNA

The Journal of DNA Mapping, Sequencing, and Analysis

ISSN: 1940-1736 (Print) 1940-1744 (Online) Journal homepage: http://www.tandfonline.com/loi/imdn20

Mitochondrial genome of Onychostoma macrolepis (Osteichthyes: Cyprinidae)

Aihong Chai, Jie Zhang, Qingman Cui & Chunying Yuan

To cite this article: Aihong Chai, Jie Zhang, Qingman Cui & Chunying Yuan (2014): Mitochondrial genome of Onychostoma macrolepis (Osteichthyes: Cyprinidae), Mitochondrial DNA

To link to this article: http://dx.doi.org/10.3109/19401736.2014.883605

	Published online: 18 Feb 2014.
	Submit your article to this journal 🗷
ılıl	Article views: 20
a a	View related articles 🗷
CrossMark	View Crossmark data ௴

Full Terms & Conditions of access and use can be found at http://www.tandfonline.com/action/journalInformation?journalCode=imdn20

http://informahealthcare.com/mdn

ISSN: 1940-1736 (print), 1940-1744 (electronic)

Mitochondrial DNA, Early Online: 1–2 © 2014 Informa UK Ltd. DOI: 10.3109/19401736.2014.883605

MITOGENOME ANNOUNCEMENT

Mitochondrial genome of *Onychostoma macrolepis* (Osteichthyes: Cyprinidae)

Aihong Chai^{1,2}, Jie Zhang², Qingman Cui¹, and Chunying Yuan¹

¹College of Marine Science & Engineering, Tianjin University of Science & Technology, Tianjin, PR China and ²Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, PR China

Abstract

Onychostoma macrolepis, which belongs to the genus Onychostoma (Cypriniformes, Cyprinidae), is a benthopelagic fish that inhabits the flowing freshwaters in China. The complete mitochondrial genome sequence of O. macrolepis is 16,595 bp in length and comprises 13 protein-coding genes, 22 tRNA genes, 2 rRNA genes and 1 control region. The base composition of the genome is 31.29% A, 24.53% T, 27.97 % C, and 16.21% G, showing considerable bias toward an A+T preference as 55.82%. The results can provide a basic database for analyzing the phylogenetic relationship and conservation genetics in the genus Onychostoma.

Keywords

Genome, mitochondrial, *Onychostoma* macrolepis

History

Received 30 December 2013 Revised 7 January 2014 Accepted 12 January 2014 Published online 18 February 2014

The cyprinid genus *Onychostoma* comprises 21 valid species, which are distributed in China and Southeast Asia (FishBase). Of the 21 species, 15 inhabit China, of which 10 are endemic to China. Therefore, the biodiversity and endemism of *Onychostoma* are very high in China, comprising at least two-third the extant species in the world. *Onychostoma macrolepis*, is a benthopelagic fish and is mainly found in Jialing River (upper Yangtze River), the headstream of Huai River, Wei River, Hai River, and the Yellow River (Yue et al., 2000), which define the northern limitation of the distribution of this genus. *O. macrolepis* has been listed as a National Second-class Protected Animal by the List of Aquatic Wild Animal Protection in China (Chen, 2007). Considering its distribution pattern, the phylogeny of the *Onychostoma* species should be studied using molecular approaches.

In the present study, we amplified the complete mtDNA of *O. macrolepis* by polymerase chain reaction (PCR) with 31 pairs of primers. Nucleotide sequences were deposited in GenBank (Accession number KF999680). The complete mtDNA of *O. macrolepis* was a closed circular molecule with a genome size of 16,595 bp, comprising 13 protein-coding genes, 22 tRNA

genes, 2 rRNA genes (12S rRNA and 16S rRNA) and 1 control region. Ten of the 13 protein-coding genes required ATG as the start codon, whereas *CO1* and *ND5* required GTG, and *ND6* required TTA. Five protein-coding genes used TAA as stop codons. *ATP8* and *ND6* stop codons include TAG and CAT, respectively. *CO3* ends with TA–, and *ND2*, *CO2*, *ND3*, *ND4*, and *Cytb* end with T–– as an incomplete stop codon. The 22 tRNA genes range in size from 67 bp in *tRNA^{Cys}* to 76 bp in *tRNA^{Lys}* and *tRNA^{Leu}*. The 12S and 16S rRNA genes were 956 and 1676 bp, respectively, and were located between the *tRNA^{Phe}* and *tRNA^{Leu}* genes and separated by the *tRNA^{Va1}* gene. The control region was 939 bp and lay between the *tRNA^{Pro}* and *tRNA^{Phe}* genes. *ND5* is the longest gene with 1836 bp, and the shortest is *ATP8* with only 165 bp. Thirteen protein-coding genes for 3797 amino acids were identified.

The nucleotide composition was 31.29% A, 24.53% T, 27.97 % C, and 16.21% G, showing considerable bias toward an A+T preference as 55.82%. The mitochondrial genes from O. macrolepis were overlapped in a total of 36 bp at nine locations and interleaved in a total of 77 bp intergenic spacers at 11 locations (Table 1).

Table 1. Characteristics of the O. macrolepis mitochondrial DNA genome.

Gene names	Coding strand	Start position	End position	Intergenic nucleotides	Overlapping nucleotides	Sizes (bp)	No. of the codons	Start condon	Stop condon
tRNA ^{Phe}	Н	1	69			69			
12S rRNA	Н	70	1025			956			
tRNA ^{Val}	Н	1026	1097			72			

(continued)

Correspondence: J. Zhang, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, PR China. Tel: + 00 8610 64807076. Fax: + 00 8610 64807099. E-mail: zhangjie@ioz.ac.cn

Table 1. Continued

Gene names	Coding strand	Start position	End position	Intergenic nucleotides	Overlapping nucleotides	Sizes (bp)	No. of the codons	Start condon	Stop condon
12S rRNA	Н	1098	2773			1676			
tRNA ^{Leu}	Н	2773	2848		1	76			
ND1	Н	2849	3823			975	324	ATG	TAA
tRNA ^{Ile}	Н	3832	3903	8		72			
$tRNA^{Gln}$	L	3902	3972		2	71			
$tRNA^{Met}$	Н	3976	4044	3		69			
ND2	Н	4045	5089			1045	348	ATG	T
$tRNA^{Trp}$	Н	5090	5159			70			
$tRNA^{Ala}$	L	5163	5231	3		69			
$tRNA^{Asn}$	L	5233	5305	1		73			
$tRNA^{Cys}$	L	5341	5407	35		67			
$tRNA^{Tyr}$	L	5407	5477		1	71			
CO1	Н	5479	7029	1		1551	516	GTG	TAA
tRNA ^{Ser}	L	7030	7100			71			
$tRNA^{Asp}$	Н	7106	7175	5		70			
CO2	Н	7190	7880	14		691	230	ATG	T
$tRNA^{Lys}$	Н	7881	7956			76			
ATP8	Н	7958	8122	1		165	54	ATG	TAG
ATP6	Н	8116	8799		7	684	227	ATG	TAA
CO3	Н	8799	9583		1	785	261	ATG	TA-
$tRNA^{Gly}$	Н	9584	9655			72			
ND3	Н	9656	10,004			349	116	ATG	T
$tRNA^{Arg}$	Н	10,005	10,074			70			
ND4L	Н	10,075	10,371			297	98	ATG	TAA
ND4	Н	10,365	11,745		7	1381	460	ATG	T
$tRNA^{His}$	Н	11,746	11,814			69			
tRNA ^{Ser}	Н	11,815	11,883			69			
$tRNA^{Leu}$	Н	11,885	11,957	1		73			
ND5	Н	11,949	13,784		9	1836	610	GTG	TAA
ND6	L	13,778	14,299		7	522	173	TTA	CAT
$tRNA^{Glu}$	L	14,300	14,368			69			
Cvt b	Н	14,374	15,514	5		1141	380	ATG	T
$tRNA^{Thr}$	Н	15,515	15,586			72			
$tRNA^{Pro}$	L	15,586	15,656		1	71			
D-loop	Н	15,657	16,595			939			

The genetic distance of *O. macrolepis*, *O. barbatum* and *O. lini* is particularly less (0.021–0.024 in *CO1*, 0.029–0.039 in *Cytb*, and 0.030–0.046 in *ND2*). These species either share common habitats in the Yangtze River or in the Pearl River. The evolutionary rate of the mitochondrion in cyprinid fishes is estimated to be 1% (Brito et al., 1997; Li et al., 2009; Wang et al., 2004; Zhao et al., 2005). Therefore, the last glacial maximum (18 kyr ago) may potentially be a key geomorphological driver for range expansion toward the north and for cladogenesis in the genus *Onychostoma*.

Acknowledgements

The authors are grateful to Mr. Hongsheng Guo and Miss Haiting Zhang for their help in the lab work and specimen preparation.

Declaration of interest

The authors report no conflicts of interest. The authors alone are responsible for the content and writing style of this article. This study was funded by the National Natural Science Foundation of China (30970321; 31272287).

References

Brito RM, Briolay J, Galtier N, Bouvet Y, Coelho MM. (1997).
Phylogenetic Relationships within Genus Leuciscus (Pisces, Cyprinidae) in Portuguese fresh waters, based on mitochondrial dna cytochrome b sequences. Mol Phylogenet Evol 8:435–42.

Chen C. (2007). The ecological habits and development, and utilization of *Onychostoma macrolepis*. Shandong Fisheries 24:

Li GY, Wang XZ, Zhao YH, Zhang J, Zhang CG, He SP. (2009). Speciation and Phylogeography of *Opsariichthys bidens* (Pisces: Cypriniformes: Cyprinidae) in China: Analysis of the Cytochrome *b* gene of mtDNA from diverse populations. Zool Stud 48:569–83.

Wang JP, Lin HD, Huang S, Pan CH, Chen XL, Chiang TY. (2004). Phylogeography of *Varicorhinus barbatulus* (Cyprinidae) in Taiwan based on nucleotide variation of mtDNA and allozymes. Mol Phylogenet Evol 31:1143–56.

Yue PQ, Shan XH, Lin RD, Chu XL. (2000). Fauna Sinica: Osteichthyes, Cypriniformes (III). Beijing, China: Science Press (In Chinese).

Zhao K, Li JB, Yang GS, Duan ZY, He SP, Chen YY. (2005). Molecular phylogenetics of *Gymnocypris* (Teleostei: Cyprinidae) in Lake Qinghai and adjacent drainages. Chin Sci Bull 50:1325–33.