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Abstract In addition to white adipose tissue (WAT) that

stores energy, human and small mammals also have brown

adipose tissue (BAT) that dissipates chemical energy for

thermogenesis. BAT contains multilocular lipid droplets

and much higher numbers of mitochondria than WAT. The

mitochondria in BAT uncouple large amounts of fuel

oxidation from ATP for heat generation. Accumulating

evidences have demonstrated that increased activity and/or

amount of BAT can reverse obesity and improve insulin

resistance, which highlights that BAT plays an important

role in energy metabolism. In this review, we summarized

recent findings that shows advantageous effects of BAT

activation in metabolic diseases. In addition, we presented

the function and role of brown and beige fat cells and

regulatory factors for them. Finally, we discussed the

potential application of brown adipocytes-based therapy

and pharmacological intervention to increase BAT activity

for the treatment of obesity and related diseases including

insulin resistance, cardiovascular diseases and type 2

diabetes.
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1 Introduction

Obesity is a major risk factor for metabolic syndromes,

including insulin resistance, type 2 diabetes mellitus,

cardiovascular diseases and some types of cancer [1].

The long-term dysregulation of energy balance leads to

the occurrence of obesity. Recent anti-obesity approa-

ches are aimed at reducing energy absorption, however,

the outcome is not satisfactory. After active BAT has

been ‘re-discovered’ in adult humans [2–6], increasing

energy expenditure has brought much attention for the

treatment of metabolic syndromes since increasing

energy expenditure can be achieved either by muscle

with physical activity [7] or brown adipose tissue (BAT)

with non-shivering thermogenesis (NST). Compared with

white adipose tissue (WAT) which stores energy, BAT

dissipates energy as heat. In rodents, BAT can be found

in interscapular, cervical, axillary and perirenal regions,

however, BAT are mainly found around neck and also in

interscapular region of newborns in human [8]. Brown

adipocytes consist of multilocular lipid droplets and

more mitochondria than WAT. BAT specific protein,

uncoupling protein 1 (UCP1) dissipates the proton gra-

dient from oxidative phosphorylation to generate heat

[9]. UCP1 positive adipocytes that have thermogenesis

capacity are also found in WAT depots after cold

exposure, which is called brown in white (brite)/or beige

adipocytes [10]. Similar to brown adipocytes, beige

adipocytes are packed with multiple small lipid droplets

and a large number of mitochondria and they contribute

to energy metabolism. Either increase of BAT activity

[11, 12] or recruitment of beige adipocytes within white

adipose tissue [8, 13, 14] is regarded as an alternative

option for the treatment of obesity and its related

diseases.
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2 Metabolic benefits of activating BAT

2.1 Contribution of active BAT to whole body energy

expenditure

In rodents, BAT contributes to up to 60 % of resting energy

expenditure (REE) during cold acclimation [9, 15]. It is

estimated that BAT mass range from *30 to 300 g in

human which could contribute to 20 % of daily REE [3,

16]. The amount of active BAT in adult humans is rather

heterogeneous due to different experimental conditions.

For example, acute cold exposure leads to increased energy

expenditure of 0.8 kcal d-1g-1 of BAT [11]. On the other

hand, fully activated BAT could account for increasing

energy expenditure of 1.5 kcal d-1g-1 of BAT [5].

Therefore, average 1 kcal d-1g-1 of BAT is assumed to

generate 50 kcal/d and might decrease 2 kg of fat mass

yearly, if adult human has average 50 g of BAT. The

browning of WAT also improves thermogenic function by

burning glucose and fat to produce heat, resulting in a

reduction of adipocity [17, 18].

2.2 Role of BAT in lipid metabolism

Accumulating evidences have demonstrated that fatty acids

(FAs) are the main fuel for UCP1 mediated BAT thermo-

genesis [9]. Along with this line, it was recently illustrated

that prolonged activation of the b3-adrenergic receptor

(b3-AR) increases fatty acid b-oxidation and lipolysis in

both WAT and BAT [19]. The activation of BAT provokes

phosphorylation of adipose triglyceride lipase (ATGL) and

hormone-sensitive lipase (HSL), which rapidly induce

intracellular lipolysis and eventually lead to FAs release

from lipid droplets. In rodent studies, it was demonstrated

that cold exposure could decrease plasma triglyceride (TG)

level and improve hyperlipidemia [20]. In addition, short-

term and/or prolonged cold exposure leads to transient

reduction in plasma TG level in humans [21, 22]. Simi-

larly, metformin treatment also decreases plasma TG level

by increasing BAT activity [23]. Therefore, triglyceride

hydrolysis and re-synthesis are a critical factor for BAT

mediated lipid metabolism. It is further supported by the

evidence that acute cold exposure for 6 weeks elevates FAs

uptake dramatically in BAT, not muscle or WAT [24].

Taken together, the activation of BAT is now considered as

an encouraging therapeutic strategy to treat hypertriglyc-

eridemia and obesity [25].

2.3 Role of BAT in glucose metabolism

BAT also possesses massive glucose dissipation ability [9].

Indeed, BAT utilizes large amount of glucose. In lean sub-

jects, the glucose uptake rate of cold stimulated BAT

exceeds that of insulin-stimulated skeletal muscle [26, 27].

Glucose uptake by BAT might be mediated by insulin-de-

pendent and insulin-independent manner [9]. In addition,

BAT participates in glucose uptake and further contributes

to whole-body glucose metabolism. We and others have

demonstrated that BAT transplantation ameliorates glucose

intolerance in diet induced and genetic obese Ob/Ob mice

[28–30]. Moreover, b3 adrenergic agonist induced BAT

activation increases glucose disposal rate and improves

insulin sensitivity both in mice [31] and humans [32–34].

Consistent with these findings, cold exposure increases

insulin sensitivity in humans with active supraclavicular

BAT [35]. Above results highlight that BAT plays pre-

dominant role in glucose homeostasis and insulin sensitivity.

3 Activators of BAT

As BAT has an important role in glucose and lipid meta-

bolism, it is urgently demanded to find safe and specific

BAT activators to prevent obesity and its related diseases.

3.1 Cold exposure

Cold exposure is a well-known safe way to activate BAT.

Physiologically, cold exposure stimulates sympathetic

nervous system which increases norepinephrine turnover,

thereby increasing thermogenic function of BAT [36–38].

Mechanistically, norepinephrine enhances transcriptional

factor mediated UCP1 expression by activating PKA and

p38-MAPK signaling pathways [39]. Interestingly, it was

reported that PET-CT positive biopsies from supraclavic-

ular area displays more similar gene signatures with beige

cells rather than classical brown adipocytes in adult human

[13]. More recently, it has been demonstrated that cold

exposure activates eosinophils and type 2 cytokines that

stimulates M2 macrophages to secrete catecholamines and

finally induces WAT browning [40, 41]. Indeed, it has been

reported that acute mild cold exposure activates BAT and

increases total energy expenditure in human subjects [24].

3.2 Exercise

Exercise increases metabolic activity of BAT and activa-

tion of thermogenic programs as well as browning in the

visceral fat [42, 43]. Interestingly, just 7 d of aerobic

exercise (60 min/d) upregulates mitochondrial UCP1

expression in BAT and reduces body weight in mice [44].

Also, the browning effect was found in subcutaneous WAT

after 12 weeks of training in human subjects [45]. In

contrast, a case-controlled study demonstrated significant

reduction in BAT activity as well as browning of subcu-

taneous WAT in endurance trained group compared with
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their sedentary counterpart [46]. Thus, exercise might

activate and recruit human BAT through activation of

sympathetic nervous system (SNS), yet, further studies

including exercise mode, duration and intensity are needed

to investigate the role of exercise in BAT metabolism.

3.3 Natural components

Oral administration of capsinoids that derived from chili

pepper has been shown to increase acute energy expendi-

ture and BAT activity in adult human [47]. Berberine

(BBR) treatment showed increased energy expenditure and

BAT activity in obese rodent model [48]. In addition, we

demonstrated that the mulberry extract (ME) and mulberry

wine extract (MWE) which contain large amount of

anthocyanin such as cyanidin 3-glucoside (C3G) and rutin,

increase mitochondrial function during the brown adipo-

genesis [49]. Kaempferia parviflora extract (KPE) admin-

istration significantly decreases body weight gain and intra-

abdominal fat accumulation, which suggested that KPE

increased energy expenditure by BAT activation [50].

3.4 Growth factors

Fibroblast growth factor 21 (FGF21) is secreted from BAT

and it shows a promising therapeutic potential in obese

rodent model [51, 52]. Indeed, FGF21 treatment increases

energy expenditure via BAT activation [53]. A large

number of evidences suggest that plasma FGF21 shows

strong positive correlation with energy expenditure. In

addition, cold exposure increases FGF21 level together

with elevated BAT activity [54, 55]. FGF21 is also known

to participate in beige formation in WAT [56]. Recently, a

clinical study demonstrated that FGF21 mimetic treatment

shows modest body weight reduction and robust lipid

clearance without effect on glucose homeostasis [57].

Future systemic investigation of therapeutic effect of

FGF21 and its mimetics on BAT mediated whole body

energy metabolism are needed in the future. BMP7, a

member of the BMP family, is essential for BAT devel-

opment and whole body energy balance mediated by BAT

[58]. In addition, BMP8b also enhances BAT mediated

thermogenesis [59]. In other hand, it has been reported that

both BMP4 and BMP7 orchestrate beige formation [60].

Furthermore, growth differentiation factor 5 (GDF5),

another BMP family member, induces beige formation in

WAT and increases systemic energy metabolism [61].

3.5 Other factors and hormones

The class of b3-AR agonists stimulates BAT activity in

rodent [62, 63]. Recently, the novel b3-AR agonist, mir-

abegron shows to stimulate human BAT thermogenesis

[64]. Also, several adipocyte specific b3-AR agonists, such

as L-796568 [65] and TAK-677 [66], increase energy

expenditure without meaningful weight loss in either case.

The growing evidences indicate that several factors and

hormones participate in whole body energy metabolism via

beige formation. Recent studies show that meteorin-like

(METRNL) [67], b-aminoisobutyric acid (BAIBA) [68],

cardiac natriuretic peptides (CNPs) [69] and prostaglandins

(PGs) [70] increase energy expenditure by inducing beige

formation. Bile acids (BAs) treatment up-regulates BAT

function, thereby increasing energy expenditure [71]. In

addition, fexaramine (Fex), a agonist of farnesoid X

receptor (FXR) that is a sensor of BAs, promotes beige

formation and raises energy expenditure [72]. Interestingly,

bile acid chenodeoxycholic acid (CDCA) administration

increases BAT activity and whole body energy metabolism

in adult human [73]. Both glucagon-like peptide 1 receptor

(GLP-1R) [74, 75] and its agonist liraglutide [76] increase

thermogenesis in BAT and induce browning within WAT.

3.6 Non-coding RNAs

There are two classes of non-coding RNAs that play vital

role in brown/beige development and activation: micro-

RNA and long non-coding RNA (lncRNAs). MiR-196a is

recently introduced as the first miRNA to regulate brown

adipogenesis in vitro and in vivo [77]. However, it should

be pointed out that miR-196a is also associated with an

oncogenic phenotype in various malignancies [78–81],

which might limit its potential therapeutic value. MiR-26

family also increases brown adipogenesis and thermogenic

program [82]. Moreover, miR-133a and miR-133b [83, 84]

and miR-106b-93 cluster [85] inhibit brown adipogenesis

and mitochondrial activity. In addition, it was demon-

strated that miR-155 inhibits brown adipogenesis in vitro

and cold induced thermogenesis in mice [86]. Compared

with microRNA, less is known about lncRNAs, however,

several groups have recently found BAT-specific lncRNAs

and verified the function of them. Blnc1 was the first

lncRNA identified to induce brown and beige fat thermo-

genesis by forming ribonucleoprotein complex with tran-

scription factor EBF2 [87]. In addition, lnc-BATE1 is

confirmed as another lncRNAs regulator of BAT devel-

opment and the important role in BAT identity and ther-

mogenic ability [88]. Thus, future studies are needed to

identify specific microRNA or long non-coding RNA

(lnRNA) for gene therapy based obesity treatment.

4 Concluding remarks

As a thermogenic organ, BAT plays predominant role in

energy homeostasis. To treat obesity with BAT, two
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potential therapeutic approaches could be anticipated:

increasing mass of BAT and increasing activity of BAT.

For the increase of BAT mass, BAT transplantation or

BAT cell therapy has been considered.

Interestingly, BAT transplantation could reverse strep-

tozotocin (STZ) induced type 1 diabetes without exoge-

nous insulin treatment in mice [89]. Furthermore, we and

other group showed that BAT transplantation improves

glucose homeostasis, reduces body weight and reverses

hepatic steatosis [28, 29, 90]. However, such approach is

not applicable for clinical field. The key challenge is to

generate large volume of human-derived brown fat pro-

genitor cells for cell therapy. Therefore, it is critical to

identify the key genes and/or pathways that are involved in

brown adipogenesis and beige formation for the develop-

ment of human brown adipocytes. To this end, Tseng and

her colleagues extensively characterized brown adipocyte

progenitor cells from adult human neck, and found that the

gene signatures of these cells share similarity with that of

mouse classical BAT [91, 92]. Identifying molecule(s) that

could mimic cold environment to increase BAT activity

would be an alternative therapeutic option for obesity

treatment. Indeed, functional thermogenic screening is an

attractive option for discovery of small molecule modula-

tors of BAT activity. As mentioned above, many factors

such as cold exposure, FGF21, BMP7 have effect on BAT

activity and stimulate the recruitment of beige fat cells.

Increasing evidences show that beige fat is also extremely

promising way to combat obesity. Further discovery for

new factors that activate brown and/or beige fat will open

new avenue for developing anti-obesity drugs. We believe

that BAT is a fascinating target organ for obesity treatment

and BAT activation with drug will be available in the near

future.
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