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Abstract

Temperature greatly affects the developmental duration of insects at their different stages, and many mathe-

matical models exist for describing their temperature-dependent developmental rates. It is important to choose

a suitable model to predict outbreaks of pest insects under climate change. However, previous comparisons

among these models were usually based on a single species. In the present study, we compared the six nonlin-

ear models (the Briére-1, Briére-2, Lactin, Performance-2, beta, and Ratkowsky models) based on the goodness

of fit and the trade-off between the model’s goodness of fit and structural complexity, using 10 temperature-

dependent developmental rate datasets on insects to make the conclusions general. We found that the square

root model (i.e., the Ratkowsky model) fitted all datasets well, and the curve shape produced by this model also

approximates the curve shape of thermodynamically based mathematical models. The square root model was

originally derived to be applicable to the growth rates of bacteria, and until now it has been generally ignored in

entomology. We were mainly concerned with the predicted results obtained by using this model on observa-

tions of temperature-dependent developmental rates. We found that the square root model described well the

pooled developmental rates in the low-, mid-, and high-temperature ranges, and we believe that it merits wider

use in entomology.
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Evidence has demonstrated that temperature has a significant influ-

ence on the developmental rate of insects (Uvarov 1931, Campbell

et al. 1974). Under global climate change, pest outbreaks exhibit

more complex dynamics and become more difficult to be predicted.

To predict the developmental duration of important agricultural

and forest pest insects exposed to different temperatures, many

mathematical models have been proposed (e.g., Logan et al. 1976;

Sharpe and DeMichele 1977; Schoolfield et al. 1981; Wang et al.

1982; Lactin et al. 1995; Brière et al. 1999; Ikemoto 2008; Shi et al.

2011; Régnière et al. 2012; Wang et al. 2013). These models have

also been tried in the study of the effect of temperature on the

growth rate of ectotherms (e.g., insects, mites, spiders, crabs,

shrimps, fishes). Yin et al. (1995) proposed a beta function to reflect

the effect of temperature on the developmental rate of crops.

Ratkowsky et al. (1983) proposed a square root model to predict

the effect of temperature on the growth rate of bacterial cultures.

However, the latter two models have received little attention in

entomological investigations. The previous studies in entomological

research frequently compared the Logan, Lactin, and Briére models

using a single species. From different studies, the conclusion as to

which was the best model was usually different. In addition, the ma-

jority of previous studies used small sample sizes ranging from five

to eight temperatures, which made the estimates of the parameters

of the nonlinear models less precise.

In the present study, we chose several nonlinear models and data

of temperature-dependent developmental rate with large sample

sizes to examine the models’ trade-off between goodness of fit and

structural complexity. We attempted to find a general model that

could well describe the majority of datasets on temperature-

dependent developmental rates of insects. This work is also moti-

vated by the studies of ontogenetic growth equation for animals and

plants. A beta sigmoid growth equation obtained from the integral

of the beta function has showed better fitting flexibility than some

traditional growth models such as the exponential, Gompertz,
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Logistic, and von Bertalanffy models (Yin et al. 2003, Voorend et al.

2014, Shi et al. 2016). Thus, it is valuable to further compare the ex-

isting temperature-dependent developmental or growth models to

find a better model than the beta function. Then we can obtain more

new candidate ontogenetic growth models by using the integral

form for the developmental or growth equation.

Materials and Methods

Data
Ten datasets of temperature-dependent developmental rates of in-

sects were chosen (among which Sample 2 is a predatory mite, not

an insect species). Table 1 lists the studied species, developmental

stages, sample sizes, and data sources. We also compared the fitted

results by using the mean and raw data of developmental rates of fe-

male fruit flies (Drosophila buzzatii Patterson & Wheeler; i.e.,

Sample 10).

Models
In the present study, we used a total of six nonlinear models that all

have the “conceptual” lower and upper developmental thresholds

(T1 and T2) at which developmental rates equal zero.

(i) Briére-1 equation (Brière et al. 1999):

r ¼ aTðT � T1Þ T2 � Tð Þ1=2 (1)

Here, r represents developmental rate at temperature T; a is a con-

stant; T1 and T2 represent “conceptual” lower and upper develop-

mental thresholds at which developmental rates equal zero.

(ii) Briére-2 equation (Brière et al. 1999):

r ¼ aTðT � T1Þ T2 � Tð Þ1=b (2)

Here, the parameters are the same as those in the Briére-1 equation

except an additional parameter b, which makes the curve fitting

more flexible. Then the Briére-1 equation is substantially a special

case of the Briére-2 equation when b¼2.

(iii) Lactin equation (Lactin et al. 1995):

r ¼ kþ e q T � e q Tu�ðTu�TÞ=d (3)

Here, k, q, Tu, and d are constants. And Tu is defined as the upper

“lethal” temperature, which is higher than the “conceptual” upper

developmental threshold (Lactin et al. 1995). In the Lactin equation,

there are no T1 and T2 parameters. However, the curve produced by

the Lactin equation has two intersections with the X-axis (i.e.,

Temperature-axis). We can obtain T1 and T2 by a numerical

method.

(iv) Performance-2 equation (Shi et al. 2011, Wang et al. 2013):

r ¼ c T � T1ð Þ 1� eK T�T2ð Þ
� �

(4)

Here, c and K are constants. This equation supersedes the

Performance-1 equation (Wang et al. 2013), which has more param-

eters and produces a very similar curve shape to the Performance-2

equation.

(v) Beta equation (Yin et al. 1995, 2003; Shi et al. 2016):

r ¼ rm
T2 � T

T2 � Tm

� �
T � T1

Tm � T1

� �Tm�T1
T2�Tm

(5)

Here, rm represents the maximal developmental rate at

temperature Tm. Note: all parameters in the beta equation have clear

meanings.

(vi) Ratkowsky equation (Ratkowsky et al. 1983):

ffiffi
r
p
¼ c T � T1ð Þ 1� eK T�T2ð Þ

� �
(6)

This equation looks like the Performance-2 equation except there is

a square root of r in the leaf-hand side of equation. Thus, this equa-

tion is often called the square root equation.

Model Evaluation
In order to compare the goodness of fit and the trade-off between

model’s goodness of fit and structural complexity among these six

nonlinear models, we used the residual sum of squares (RSS), coeffi-

cient of determination (R2), adjusted coefficient of determination

(R2
adj), root mean square error (RMSE), and corrected Akaike infor-

mation criterion (AICc).

RSS ¼
Xn

i¼1
ri � r̂ ið Þ2 (7)

Here, n represents the sample size; ri represents the i-th observation

of developmental rate, and ri with a hat represents the predicted de-

velopmental rate.

R2 ¼ 1�

Xn

i¼1
ri � r̂ ið Þ2Xn

i¼1
ri � rið Þ2

(8)

Table 1. Ten datasets of temperature-dependent developmental rates of insects

Sample Species Order: Family Developmental stage Sample size Source

1 Helicoverpa armigera Hübner Lepidoptera: Noctuidae Pupa 23 Wu et al. (2009)

2 Kampimodromus aberrans Oudemans Acari: Phytoseiidae Egg þ larva þ 1st–2nd nymphs 9 Broufas et al. (2007)

3 Toxorhyynchites brecipalpis Theobald Diptera: Culicidae Egg 19 Trpis (1972)

4 Bactrocera dorsalis Hendel Diptera: Tephritidae Egg 19 Messenger and Flitters (1958)

5 Aedes aegypti L. Diptera: Culicidae Larva 15 Gilpin and McClelland (1979)

6 Bemisia tabaci (B-biotype) Gennadius Hemiptera: Aleyrodidae From egg to adult 7 Xiang et al. (2007)

7 Lipaphis erysimi Kaltenbach Hemiptera: Aphididae From egg to adult 12 Liu and Meng (2000)

8 Myzus persicae Sulzer Hemiptera: Aphididae From egg to adult 11 Liu and Meng (1999)

9 Epilachna varivestis Mulsant Coleoptera: Coccinellidae Larva 8 Shirai and Yara (2001)

10 Drosophila buzzatii Patterson & Wheeler Diptera: Drosophilidae From egg to adult 9–1,204a de Jong (2010)

a9 is the number of mean data of developmental rates, and 1,204 is the number of raw data of developmental rates.
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Here, ri with a dash represents the mean of the observed develop-

mental rates. And the adjusted coefficient of determination is as

follows:

R2
adj ¼ 1� n� 1

n� p
1� R2
� �

(9)

Here, p represents the number of parameters in a nonlinear model

including one for the error term. We also used the RMSE because

the magnitude of the RMSE can be considered to be the “average de-

viation” between the observed data and the predicted values.

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
RSS=ðn � p þ 1Þ

p
(10)

AICc ¼ �2Lþ 2pn= n� p� 1ð Þ (11)

where

L ¼ � n

2
ln

RSS

n

� �
(12)

We used RSS and R2 as the indicators to evaluate the model’s good-

ness of fit, and used R2
adj, RMSE, and AICc as the indicators to eval-

uate the trade-off between a model’s goodness of fit and structural

complexity.

The “nlinfit” function in Matlab 6.5 was used to carry out the

nonlinear fitting. For robust estimation, “nlinfit” uses an iterative

reweighted least squares algorithm. At every iteration, the robust

weights are recalculated based on each observation’s residual from

the previous iteration. These weights downweight outliers, so that

their influence on the fit is decreased. Iterations continue until the

weights converge. We provided the Matlab procedures for carrying

out the nonlinear fitting for a given dataset of temperature-

dependent developmental rates (see Supp Material 1 [online only]

for details).

Results

Supp Table 1 (see Supp Material 2 [online only] for details) shows

the comparative results. From the viewpoint of a trade-off between

the model’s goodness of fit and structural complexity (based on the

calculated R2
adj or RMSE or AICc), the Briére-2 equation was better

than the Briére-1 equation in five cases with larger sample size

(n>10), but the latter performed better for the datasets with smaller

sample size (n<10). However, the Briére-2 equation had a better

goodness of fit than the Briére-1 equation for all datasets investi-

gated. Because of an additional parameter, b, the Briére-2 equation

is more flexible in producing a curve shape. From Sample 10 with a

small sample size of mean data, we found that the Briére-1 equation

obtained a better trade-off between the model’s goodness of fit and

structural complexity than the Briére-2 equation; however, it is

worse than the Briére-2 equation when using the raw data. Except

for Samples 4 and 7, the Ratkowsky equation had a better goodness

of fit than the Briére-2 equation for all other samples. It was also

better than the Briére-2 equation based on the calculated R2
adj,

RMSE, and AICc. Although the beta equation fitted the data of the

observed developmental rates well, it was demonstrated to be no

better than the Ratkowsky equation from the point of view of good-

ness of fit or from the trade-off between model’s goodness of fit and

structural complexity. We also found that the curve shape produced

by the beta equation was more similar to that produced by the

Ratkowsky equation, relative to the others. For the remaining two

equations (i.e., the Lactin and Performance-2 equations), the good-

ness of fit or the trade-off between model’s goodness of fit and

structural complexity was worse than the Briére-2 equation or the

Ratkowsky equation. The data showed that in the mid-temperature

range, a perfect linear relationship between temperature and devel-

opmental rate did not exist. However, the Lactin and Performance-2

equations had assumed a very approximate linear relationship be-

tween them. Thus, they could not perform better than the others for

most datasets.

The lower and upper developmental thresholds are a matter of in-

terest to some investigators, because they want to know the predicted

critical temperatures where insects stop developing. Traditionally, the

linear fitting was used to calculate the lower developmental threshold

by using the developmental rate data in the mid-temperature range.

The intersection between the straight line and the X-axis is reckoned

as the lower developmental threshold. For estimating the upper devel-

opmental threshold, the Logan, Briére, Lactin, and Performance equa-

tions are usually used. From the model’s goodness of fit or the trade-

off between model’s goodness of fit and structural complexity, the

Lactin equation was better than the Performance-2 equation for each

species investigated. The Briére-1 and Briére-2 equations provided an

approximate estimate on the “conceptual” upper developmental

threshold, but their estimates on the “conceptual” lower developmen-

tal threshold were lower than the estimates by using the Lactin and

Performance-2 equations. The beta and Ratkowsky equations

described the effect of temperature on the developmental rates of in-

sects in the mid-temperature range better than the Lactin and

Performance-2 equations.

Supp Figs. 1–11 (see Supp Material 3 [online only] for details) vi-

sually exhibit the fitted results using these six nonlinear equations to

10 datasets. There are nine insect species and one mite species (i.e.,

Sample 2). Supp Figs. 10 and 11 (online only) described the same in-

sect species (D. buzzatii), but with different sample sizes. Supp Fig.

10 (online only) used the mean data, whereas Supp Fig. 11 (online

only) used the raw data. The open circles represent the observations

of developmental rates, and the curves represent the predicted devel-

opmental rates based on different nonlinear models. For every spe-

cies, the aforementioned six nonlinear models were used to fit the

data of temperature-dependent developmental rates, respectively.

Discussion

As an empirical method, the predicted lower developmental thresh-

old by using the linear equation in the mid-temperature range usu-

ally approximates its actual lower terminating temperature for

development. However, the Briére-1, Briére-2, beta, and Ratkowsky

equations only provide “conceptual” lower and upper developmen-

tal thresholds, and the estimates of these two extreme temperatures

by these nonlinear equations do not accord with the actual observed

threshold temperatures. Although the Lactin and Performance-2

equations can provide the approximate estimates to the actual devel-

opmental thresholds, these two equations cannot reflect an approxi-

mate exponential growth relationship between temperature and

developmental rate in the low-temperature range (Uvarov 1931,

Campbell et al. 1974). If the data of developmental rates at low tem-

peratures are lacking, the Lactin and Performance-2 can fit the data

well (see Sample 6 in Supp Fig. 6 [online only]). However, these two

equations cannot overall reflect the nonlinear relationship between

temperature and pooled developmental rates in the low- and mid-

temperature ranges. We believe that these two nonlinear equations

can do well on the condition that the data in the low-temperature

range are lacking. Thus, we do not approve using the Lactin and

Performance-2 equations to fit the data including the developmental

rates in the low-temperature range. The Briére-1 and Briére-2
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equations also applied to many samples, but the latter was shown to

be better than the former actually as a special case of the latter. We

consider that the additional parameter (i.e., in the Briére-2 equation)

is justified, making data fitting more flexible. The Briére-2 equation

was almost applicable to all samples investigated. For Sample 9, the

last datum was intentionally excluded to check the predicting abili-

ties of different models. We found that the Briére-2, Lactin, and

Performance-2 equations provided an impractical prediction for the

developmental rate at the excluded temperature, whereas the beta

and Ratkowsky equations provided acceptable predictions at this

excluded temperature. In this case, we should approve the use of the

Ratkowsky equation rather than the Briére-2 equation. In fact, the

curve shape produced by the Ratkowsky equation approximates

that produced by the SSI or ROR models based on thermodynamic

theories (Ikemoto 2008, Ikemoto et al. 2013, Ratkowsky et al.

2005, Corkrey et al. 2012). These two thermodynamic equations

also predicted a slightly concave curve in the high-temperature

range. In practice, it is impossible to observe reliable developmental

rates at temperatures near the upper developmental threshold be-

cause of high mortality at these temperatures. Thus, it is difficult

to determine which model is most reasonable in predicting

developmental rates near the actual upper developmental threshold.

However, we found that the degree of curvature of the Ratkowsky

equation near the upper developmental threshold was very small

when developmental rates in the high-temperature range exhibited a

sharp drop with increased high temperatures (see Supp Figs. 1 and 4

[online only]). We also showed an example of growth rate of

Flavobacterium hibernum McCammon, a lactose-utilizing bacte-

rium from a freshwater Antarctic lake (Fig. 1; McCammon et al.

1988). In fact, the Ratkowsky equation has been demonstrated to

apply to many other datasets of growth rates of bacteria

(Ratkowsky et al. 2005), as that model was originally developed to

describe the temperature dependence of bacterial growth.

Schoolfield et al. (1981) consider that the temperature-dependent

rate models are applicable to both developmental rate and growth

rate of poikilotherms. The Logan model (Logan et al. 1976) is al-

ways used to describe the effect of temperature on the developmen-

tal rate of insects, and is also used for the growth rate of insects

calculated from life table methods. Thus, it is feasible to introduce

the Ratkowsky equation to the investigation of temperature-depen-

dent developmental rate of insects, considering its good performance

in fitting data.

In all the models, temperatures such as T1 and T2 should just be

looked upon as mathematical symbols and not predictors of mini-

mum or maximum temperatures of a range at which development

can occur. For the square root model (i.e., the Ratkowsky model),

Ratkowsky et al. have never maintained that these temperatures are

anything more than notional (or notational) temperatures, and there

is no organism on Planet Earth (bacterial, archaeal, eucaryotic) that

we are aware of which can grow at temperatures approaching T1

from above. That is, usually the true minimum observable tempera-

ture for growth is several degrees (�C or K) above the notional mini-

mum temperature. At the upper end of the temperature scale, the

difference between the notional maximum temperature T2 and the

observable maximum temperature Tmax may be much smaller than

at the lower end (perhaps as small as 1�C), so it is very difficult to

get reliable data at this upper threshold temperature because of high

mortality rates. Thus, we advocate that when using any of the six

models, there should be no thoughts that these equations are doing

anything more than possibly providing a good fit to existing data on

temperature dependence of growth rate. The models simply do not

incorporate a prediction of the range of temperature dependence.

Supplementary Data

Supplementary data are available at Annals of the Entomological Society of

America online.
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Fig. 1. Effect of temperature on the growth rate of F. hibernum. (A)

Temperature-dependent growth rate. The small open circles represent the

observed growth rates (1/min), and the curve represents the predicted growth

rates at different temperatures. (B) Square root of growth rate.
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