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Abstract  Population differentiation is a fundamental process of evolution, and many evolutionary studies, such as population 

genetics, phylogeography and conservation biology, all require the inference of population differentiation. Recently, there has 

been a lot of debate over the validity of FST (and its analogue GST) as a measure for population genetic differentiation, notably 

since the proposal of the new index D in 2008. Although several papers reviewed or explored specific features of these statistical 

measures, a succinct account of this bewildering issue with an overall update appears to be desirable. This is the purpose of the 

present review. The available statistics generally fall into two categories, represented by FST and D, respectively. None of them is 

perfect in measuring population genetic differentiation. Nevertheless, they each have advantages and are valuable for current re-

search. In practice, both indices should be calculated and a comparison of them can generate useful insights into the evolutionary 

processes that influence population differentiation. FST (GST) has some unique irreplaceable characteristics assuring its standing 

as the default measure for the foreseeable near future. Also, it will continue to serve as the standard for any alternative measures 

to contrast with. Instead of being anxious about making choice between these indices, one should pay due attention to the equili-

brium status and the level of diversity (especially HS) of the populations, since they largely sway the power of a given statistic to 

address a specific question. We provide a multi-faceted comparative summary of the various statistics, which can serve as a basic 

reference for readers to guide their applications [Current Zoology 61 (5): 886–897, 2015]. 

Keywords  Population structure and subdivision, Coefficient of inbreeding, Fixation index, Gene identity, Gene flow, 
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1  Introduction 

Population differentiation (subdivision) is a funda-
mental process of evolution. It is recognized as "funda-
mental" because it is a process which every species un-
avoidably undergoes during evolution, and it may lead 
to speciation or extinction under certain conditions. Ac-
tually, if one adopts Wright's (1932) perspective on 
evolution, the problem of speciation can be reduced to 
the problem of how a single population splits into two 
populations on different "adaptive peaks" (Barton and 
Charlesworth, 1984). Consequently, many studies in 
population genetics, phylogeography and conservation 
biology benefit from the inference of population diffe-
rentiation. Therefore, determining and measuring popu-
lation differentiation is of central importance. Essen-
tially, genetic differentiation of populations is the result 
of uneven (nonrandom) spatial distribution of genetic 
variation in a species (Hartl and Clark, 1997), reflecting 

a departure from panmixia (Box 1). Accordingly, Sewall 
Wright, one of the trio key figures known as the found-
ers of theoretical population genetics, developed the 
so-called F-statistics (also known as fixation indices) in 
the 1950s to measure population differentiation (Wright, 
1951; and see below for a historical account). These 
statistics, in particular the index FST, have since been 
widely employed in a great diversity of research fields.  

Recently, there has been some heated debate in mo-
lecular ecology over the validity of FST (and its analo-
gue GST) as a measure for population genetic differen-
tiation, notably since the proposal of the new index D in 
2008 (e.g. Jost, 2008, 2009; Ryman and Leimar, 2008, 
2009; Whitlock, 2011; Leng and Zhang, 2011). This has 
stimulated field-wide careful rethinking on current per-
ceptions and methods for measuring population diffe-
rentiation. As a consequence, several papers have been 
published, either reviewing the general relationships 
between the popular statistics such as D, FST (GST) and  
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their standardized forms (Meirmans and Hedrick, 2011), 
or inspecting the behaviours of these statistics on short 
timescales (Raeymaekers et al., 2012), or examining 
specifically non-equilibrium conditions (e.g. Leng and 
Zhang, 2013; Box 1), or discussing applications of these 
statistics using a certain type of population genetic data 
(e.g. microsatellite; Putman and Carbone, 2014). Never-
theless, a succinct account of this rather puzzling issue 
with an overall update appears to be lacking. This is the 
purpose of the present review. We will focus on some 
important issues which have not been covered or not 

extensively discussed, while minimizing the topics al-
ready discussed in the aforementioned publications. We 
do not deal with the methods for estimating the various 
statistical measures. Mathematic formulae are also kept 
to a minimum except where they are associated with the 
logic flow of writing. Readers who are familiar with the 
various FST-like and alternative statistics can skip the 
third and fourth sections. 

2  The Rationales 

The key issue in determining and measuring popula-

Box 1 Glossary 
Equilibrium: A state of population in which the actions of various evolutionary forces such as mutation, migration, genetic 

drift and natrual selection, are in balance such that the gene (allele) frequencies remain unchanged in the population. In 
practice, it is difficult to know whether a population is already under equilibrium. Given the significant impact of 
Pleistocene glaciations on the distribution of plants and animals, and considering the time scale required for populations to 
reach equilibrium (often in the order of the reciprocal of the mutation rate; Takahata & Nei, 1984), it is likely that many 
species are far from reaching equilibrium at many genetic loci (i.e. they are still under non-equilibrium). 

Haplotype, homozygote, heterozygote: For a diploid individual, there exists a pair of homologous alleles at any genomic 
locus, with the two sequence copies being either identical (in this case, the individual is homozygous or is a homozygote) 
or nonidentical (in this case, the individual is heterozygous or is a heterozygote). The molecular description of the 
particular DNA segments at a locus in an individual is called its ‘genotype’, with each distinct copy being termed a 
‘haplotype’. From a genomic viewpoint, the term haplotype refers to a distinct set of nucleotide sites linked on the same 
chromosome and inherited together in meiosis; from a population genetic viewpoint, it refers collectively to a set of 
identical alleles in populations (Huang et al., 2008). 

Infinite allele model (IAM): A mutation model proposed by Kimura and Crow in 1964. It assumes that every mutation 
occurred in the population will produce an unique state of allele. It implies that mutation is independent and there exist an 
infinite number of nucleotide sites to mutate, that is known as infinite site mutation model (ISM). IAM is mathematically 
very convinent and has been popularly employed for describing mutations in nucleotide sequences in molecular evolution 
and population genetics. A special case of IAM is known as the K-alleles model (KAM) under which there exist a finite 
number of allelic states (e.g. K = 999), and mutation will generate a new allele of any possible allelic state at random. 

Island model: A model for decribing population structure proposed by Sewall Wright in which the total population is divided 
into subgroups, each breeding at random within itself, except for a certain proportion of migrants drawn at random from 
the whole (Wright, 1943). Often, it is further assumed that each subpopulation (subgroup) exchanges genes at the same 
rate with every other subpopulation. 

Panmixia, population structure, population differentiation, population subdivision: Panmixia refers to a condition in 
which the population is a single entity with complete random mating. Such a condition can be broken by various factors, 
for example, selection makes certain individuals to have mating advantages over the others, or a reduction in gene flow 
allows subpopulations in two geographical localities to be influenced independently by genetic drift. This will ultimately 
result in differentiation of allele frequencies between these subpopulations, leading to population structure - a process 
known as population differentiation or population subdivision.  

Private alleles: Alleles found in only one local population (or deme). 

Stepwise mutation model (SMM): A mutation model proposed by Ohta and Kimura in 1973 which assumes that the allelic 
states can be expressed by integers and that, mutation will change the allelic state by moving either one (or finite number) 
step in the positive direction or in the negative direction in the allele space. SMM is commonly used in modeling mutaions 
of microsatellite loci. The simplest SMM is known as the single-step mutation model (SSM) under which the new allele 
size is either increased or decreased by one step. 
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tion differentiation is how to quantify the nonrandom 

distribution of genetic variation in populations. Consi-
dering a metapopulation (the total population), it con-

sists of several local populations (the subpopulations). A 

basic rationale is to compute the difference in the ge-
netic composition of the subpopulations from the ex-

pectation of random mating in the total population. 
There are various ways to realize this, depending on one's 

viewpoints; here are a few examples: (1) to compute the 

variance of allele frequencies between subpopulations 
(e.g. Wright, 1943); (2) to calculate differences in the 

(effective) number of alleles between subpopulations 
(e.g. Jost, 2008); (3) to estimate the difference in genetic 

distance between genes (or haplotypes, Box 1) in sub-
populations (e.g. the analysis of molecular variance, 

AMOVA, approach; Excoffier et al., 1992); (4) to de-

termine the difference in coalescence times of alleles 
within and between subpopulations (e.g. Slatkin, 1991); 

(5) to count the difference in allele size between sub-
populations in some particular situations [e.g. Slatkin, 

1995; note that this is for loci following stepwise muta-

tion model (SMM, see Box 1) such as microsatellites, 
and hence in a sense is analogous to the previous me-

thods dealing with coalescence times and genetic dis-
tance]; (6) to compare the discrepancy in heterozygosity 

(or homozygosity) between subpopulations and the total 
population (e.g. Nei, 1973); (7) to assess the deviation 

in inbreeding between subpopulations and the total 

population (e.g. Wright, 1921,1922); (8) to determine 
the co-ancestry coefficient (correlation or relatedness) 

for alleles within a subpopulation relative to the total 
population (Weir and Cockerham, 1984); and (9) to 

quantify the difference in private alleles (Box 1) be-
tween subpopulations (e.g. Slatkin, 1985; note that pri-

vate alleles can be the results of drift, mutation, or other 

forces; a subset of the private alleles may have reached 
fixation, thus the proportion of differentially fixed al-

leles can also be a kind of measure). 
Following these different approaches, different sta-

tistics have been or can be developed. Obviously, these 

routes are not independent and nor exclusive to each 
other. For example, although by definition some of the 

statistics cited above are not based on heterozygosity, 
they can be expressed, after some mathematical trans-

formation, as a function of heterozygosities [e.g. as no-
ticed by Meirmans and Hedrick (2011) for Jost's D]. 

However, in practice, all these approaches should be 

considered from both statistical and genomic perspec-
tives, since what we obtained empirically are estimates 

of the statistics from population and genomic data. 

There exist at least four levels of stochastic variation 
that complicate all analyses: first, the effect of sample 

sizes; second, the effect of the (number of) subpopula-

tions sampled; third, the effect of the number of loci 
used to monitor genetic variation in populations; and 

fourth, the genomic location of genetic loci. The first 
two can be referred to as population level sampling va-

riance, and the last two genomic level sampling va-

riance. Although well-defined statistical approaches 
exist to minimize bias for estimating parameters from 

data (Lehmann and Casella, 1998), e.g. maximum like-
lihood and Bayesian methods, thus dealing with the 

population level sampling variance, the genomic level 
sampling variance cannot be coped with just statistically. 

For example, great variation between individual loci 

(that is the genomic level sampling variance) is not un-
expected, even if these loci are under identical evolu-

tionary forces. This means that measuring population 
genetic differentiation in any applications must be based 

on a large number of unlinked loci besides reasonable 

population level sampling. In addition, different types of 
loci (e.g. microsatellite DNA versus SNPs) usually yield 

different estimates, a reflection of different modes of 
molecular and genomic evolution of these loci.  

3  The Origin of FST as a Standard 
Measure of Population Subdivision 

Technically, genetic differentiation can be formulated 
as differences of allele frequencies between subpopula-
tions (Wright, 1943), reflecting a significant departure 
from random mating in the total population. Such de-
parture can be assessed in terms of changes in hetero-
zygosity and homozygosity of populations ("the relative 
amount of heterozygosis" or homozygosis in Wright's 
words; see below), for example, the relative reduction in 
heterozygosity due to non-random mating - this is what 
the standard measure of differentiation, Wright's FST, 
was founded on (Wright, 1951, 1965).  

Although FST has been widely-employed as the clas-
sic and standard measure of population genetic diffe-
rentiation, its original form was developed by Wright 
(1921,1922) as coefficient of inbreeding for depicting 
localized departure of allele frequency because of non-   
random mating from expectation under panmixia (as-
suming there is no change in allele frequency in the po-
pulation - note that this is a rather strong assumption 
that is in turn based on the presumption that population 
size is large and mutation and selection are unimportant.  
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In one sense, it is here the deficiencies of FST and GST 

stem from). As population subdivision also leads to 

non-random mating in the total population, the coeffi-

cient of inbreeding F was later adopted for measuring 

the departure from random mating in structured popula-

tion (Wright, 1951). But, in this situation, there exist 

several hierarchic levels to define the analysis unit, 

more than one inbreeding coefficients are thus needed. 

Hence, Wright referred to the set of inbreeding coeffi-

cients as F-statistics, and also designated them as the 

fixation indices (Wright, 1951). Among them, never-

theless, non-random mating as indicated by F in the 

broadest context, namely FST, has two different sources 

of origin: inbreeding within each subpopulation and 

population structure among subpopulations. From this 

perspective, FST clearly carries information about popu-

lation subdivision. 

For a population with two levels of structures, FIT is 

the inbreeding coefficient of individual relative to ga-

metes of the total population, FIS is the inbreeding coef-

ficient of individual relative to gametes of the subpopu-

lation (average over all subpopulations), and FST which 

represents the correlation between gametes randomly 

drawn from within subpopulations relative to gametes 

of the total population is 

( ) /(1 ).ST IT IS ISF F F F             (1) 

It can also be written as, 
2

(1 )
p

ST p
F

p




                 (2) 

2
p is the variance of the frequency of allele A of sub-

populations and p̅ is the average frequency of allele A in 

the total population for biallelic systems (Wright 1965). 

Wright thus summarized that there exist several inter-

pretations of the F-statistics: "as correlations, as func-

tions of the relative amount of heterozygosis, ... in some 

cases, as probabilities of identity by origin", and as "the 

ratio of the actual variance of gene frequencies of sub-

divisions to its limiting value, irrespective of their own 

structures" (Wright 1965). He also emphasized:  "FST 

in the broad sense can always be obtained, at least em-

pirically, for the variance of distribution of gene fre-

quencies even in cases involving selection", from the 

formula (2) above. "The results, of course, apply only to 

the particular loci in question…". 

A detail worthy of pointing out that will promote our 

understanding of Wright's F-statistics is that Wright's 

usage of the word "fixation" in that classic context is 

quite different from the current usage in population ge-

netics (where fixation refers to the frequency of an al-

lele reaching 100% in the population). Fixation, in the 

F-statistics context, refers to the fixation of a single 

allele at a locus to form a homozygote, i.e. homozygosis 

(by definition, the formation of a zygote by the union of 

two gametes that have one pairs of identical alleles for 

diploid). Thus, for a population, “the percentage of ho-

mozygosis measures the degree of fixation of heredi-

ty…”(p.129, Wright, 1921). The inbreeding coefficient 

"gives the departure from the amount of homozygosis 

under random mating toward complete homozygosis" 

(p.334, Wright, 1922). Initially, it was defined to assess 

the degree of inbreeding in a given population. Thus, it 

represents "a scale which runs from" "zero under ran-

dom mating" to "1 under complete fixation" "while the 

percentage of homozygosis is running from 50 per cent. 

to 100 per cent.", "and F as the weighted average in the 

intermediate population" (Wright, 1922; 1951). On that 

account, for F = 0.59, it means that 59% of the hetero-

zygotes expected under Hardy-Weinberg assumptions 

was replaced by homozygotes in the population (or the 

population contains 59% fewer heterozygotes than ex-

pected under Hardy-Weinberg assumptions) due to 

non-random mating. Therefore, the population is in a 

much greater degree towards complete fixation (F = 1) 

compared to random mating (F = 0). Hence, the logic of 

Wright to name his F-statistics generally as "fixation 

index" (Wright, 1951) is that they reflect, compared to 

the situation of random mating, the degree of approach 

toward the status of complete fixation in a population 

where every individual is homozygote at the locus of 

interest (i.e. complete homozygosis in Wright's words). 

As such, even if a population hosts two different alleles 

at a locus, if there exists no heterozygote, the population 

has reached complete fixation (i.e. under complete ho-

mozygosis), and thus F = 1. 

4  A Brief Introduction of the FST-like 
Statistics  

A number of related indices of genetic differentiation 

have been subsequently derived in link with the natures 

of the diagnostic genetic markers, such as GST (Nei 

1973),ΦST (Excoffier et al., 1992), QST (Prout and Bark-

er, 1993; Spitze, 1993), RST (Slatkin, 1995). These are 

referred to as FST-like statistics for convenience. 

GST. In practice, the most widely applied statistic for 
measuring population genetic differentiation is Nei’s 
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GST (1973), an extension of FST for loci with multiple 
states of alleles. It analyzes allele frequency variation 
among subpopulations in terms of heterozygosity or 
gene diversity as defined by Nei (1973). Given a diploid 
population with K subpopulations and I allelic states at 
a locus. Denote the frequency of the ith allele in the 
population as pi, and the corresponding frequency in 

subpopulation k as pki. Let HT = 1JT be the total hete-
rozygosity, i.e. the probability of genotypes with the 
union of two different states of alleles, of the total pop-

ulation, where 2
T i

i

J p is the homozygosity (i.e. the 

probability of genotypes with the union of two identical 
states of alleles). Nei (1973) referred to HT and JT as 
gene diversity and gene identity of the total population, 
respectively. Extended from the definition of pairwise 
diversity of two populations, he defined DST as the av-
erage gene diversity between subpopulations. The total 
gene diversity is then linearly decomposed as HT = HS + 
DST, where HS is defined as the (average) gene diversity 
within subpopulations, which can also be written in 
form of average gene identity within subpopulation as 

HS = 1 JS. Nei regarded DST as a measure of absolute 
magnitude of gene differentiation. The differentiation 
relative to the total population, named by Nei the coef-
ficient of gene differentiation is given by  

GST = DST / HT = (HT - HS) / HT.      (3) 
For a neutral locus with only two types of allele, it 

can be shown that GST is identical to Wright’s FST. For 
multiple allelic situations, GST is equal to the median of 
FST for all alleles, especially by definition expressed in 
equation (2). Note that for definition of FST in equation 
(1), FIS and FIT can be negative as they are similar to 
correlation coefficient; however, quantities used for 
defining GST are all nonnegative.  
θ. By analogue of Wright’s F-statistics, Weir and 

Cockerham (1984) derived a set of parameters f, θ and 
F to describe correlations of gene frequencies, by the 
variance of the allele frequencies between populations 

w, the variance of the allele frequencies between indi-

viduals within populations b, and the variance of the 

allele frequencies between gametes within individuals a. 
They defined  

ˆ ,

ˆ1 ,

ˆ .

1
a b w

a b

a

a

a

b

w

w

F

f


  


 


  

 

 



 

 

 

and used ̂  as an estimator of  (the equivalent of 

Wright's FST). θ can be regarded as co-ancestry coeffi-

cient (or relatedness) for alleles within a subpopulation 

relative to the total population. A unique point is that 

their estimator also accounted for sampling variance of 

population and samples which are drawn from the popu-

lation. ̂ can be approximated by the sample mean and 

variance of allele frequency as, 
2

ˆ .
(1 )

s

p p
 


 

where s2 is the sample variance of allele A frequency 

over subpopulations and p̅ is the average sample fre-

quency of allele A and 1 - p̅ the average sample fre-

quency of allele a in the total population for biallelic 

situations (Weir and Cockerham, 1984). They further 

provided a jackknife procedure for estimating the va-

riance of their estimator. For multiple loci cases, they 

omits one locus at a time and calculate the jackknife 

variance of ̂ , while for single locus case, they suggest 

to jackknife over (sub-) populations. 

Coalescent FST. Also by analogue of Wright’s F-  

statistics, Slatkin (1991) related FST with the time to 

most recent common ancestor (i.e. the coalescence time) 

for a pair of alleles chosen within the same subpopula-

tion and drawn randomly from the total population, that 

is 

0 ,ST
t

t
F

t
  

where, 0t  is the average coalescence time of two al-

leles drawn from the same subpopulation and t is the 

average coalescence time of two alleles drawn from the 

total population (the whole metapopulation). This defi-

nition of FST is independent on the assumptions of de-

mography and expected to be roughly similar for all 

neutral loci (Whitlock, 2011). 

ΦST. Another FST analogous statistic, ΦST, was de-

veloped by Excoffier (1992). It is based on the idea of 

analysis of variance (ANOVA) and was termed "analy-

sis of molecular variance (AMOVA)". They extended 

the work of Cockerham (1973) and Weir and Cocker-

ham (1984), which partitioned the overall variance into 

within and among populations components, to a com-

parable analysis of haplotypic diversity. A matrix of 

squared distances of each pair of haplotypes was con-

structed and used to calculate sum of squared deviations 

of different subdivisions. The distance metric can be 

customarily specified to any meaningful evolutionary or 
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genetic distance according to the research question. If a 

binary distance between haplotypes is used, one for 

identical haplotype and zero for different haplotypes, 

then ΦST is the same as or FST. To test the significance 

of each component of variances, a permutation proce-

dure was conducted. The null distribution of component 

of variance was calculated from a large number of rep-

licate data sets by reallocating each individual to a ran-

domly chosen population. 

RST. As microsatellite data become more popular in 

the analysis of natural populations, RST, which is also a 

FST-like statistic, specifically accounting for the muta-

tional process of microsatellite loci, was introduced by 

Slatkin (1995). RST is the fraction of total variance of 

allele size from between populations (Slatkin, 1995). 

Allele size is measured as the number of repeat units in 

the short microsatellite DNA sequences. Slatkin showed 

that, for microsatellite loci following generalized step-

wise mutation model, RST has very similar property as 

that of FST under a K-alleles mutation model (Box 1). 

The FST analogues such as GST,  and ΦST, in partic-

ular GST, have been criticized to be constrained by 

within subpopulation heterozygosity HS (Hedrick, 2005; 

Jost, 2008; Edelaar and Bjorklund, 2011).  

5  Alternative Statistics of Differentiation 

There exist two additional measures of differentiation 

that are quite different from the FST-family statistics 

discussed above: 

G'ST. As seen from formula (3), the maximum value 

of GST is constrained by that of HS; cases exist where 

GST is very small even when there are no shared alleles 

between any two subpopulations (Hedrick, 2005; Jost, 

2008). As a rectification and inspired by Lewontin’s 

standardization on the index of linkage (Lewontin, 

1964), Hedrick (2005) introduced a standardized meas-

ure of differentiation based on the original GST,  

( )

' ST
ST

ST max

G
G

G
  

where, for K equally weighted subpopulations, 

( )
( 1)(1 )

 
1

S
ma

S
T xS

K H
G

K H

 
 

 
 

This ensures that the value 1 can be reached when 

there are no shared alleles among subpopulations. This 

standardization was later recommended to extend to 

other FST analogous such as ΦST or  (but not RST) 

(Meirmans, 2006). However, G'ST is largely a superfi-

cial transformation of GST, at a cost: it loses the inherent 

theoretical properties of GST and thus lacks a proper 

evolutionary interpretation (Ryman and Leimar, 2009; 

Whitlock, 2011; Leng and Zhang, 2011).  

D. Jost (2008) further noticed that Nei’s additive de-

composition of total heterozygosity, HT = HS + DST, is 

an incomplete partitioning, because the two components 

on the right are not independent. To overcome this, he 

adopted an ecological concept of the so-called true di-

versity ΔT (Jost 2007), which corresponds to, under the 

assumption of equal sizes of all subpopulations, the 

effective number of alleles in the term of Kimura and 

Crow (1964). 

ΔT = 1/JT, 

which is actually equal to the reciprocal of Nei’s (1973) 

gene identity. Jost then partitioned ΔT into the within- 

and between-subpopulation components (ΔS and ΔST, 

respectively) (Jost, 2008).  

T S ST    . 

To make ΔS and ΔST being independent of each other 

(i.e. being the pure within- and between-subpopulation 

components), "ΔS for n equally weighted subpopula-

tions must be the reciprocal of the average of the gene 

identities of the subpopulations" (p.4020, Jost, 2008). 

That is: 

ΔS = 1/JS. 

The between subpopulation component ΔST is then 

defined as an absolute measure of subpopulation diffe-

rentiation (because it represents the effective number of 

distinct subpopulations). It has a range between n (when 

all n subpopulations have no shared alleles) and 1 

(when all subpopulations are identical in composition). 

From this perspective, Jost (2008) proposed a com-

pletely new relative measure of differentiation, named 

as D: 

D = [(ΔS/ΔT) – 1]/[(1/K) – 1] 

  = (JT/JS– 1)/[(1/K) – 1] 

  = [(JS–JT)/JS] [ K/(K – 1)]   

  = [(HT – HS)/(1 – HS)] [K/(K – 1)]. 

Jost (2008) pointed out that D is independent of 

within-subpopulation heterozygosity (HS). However, 

one may argue that D is not really independent of HS 

but is not constrained by it (recall that GST is con-

strained by HS). 

6  Critical Issues in the Application of 
the Statistics 

We would like to emphasize that the distribution pat-

tern of genetic variation within a species is an inte-
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grated consequence of both historical and contemporary 

processes, the status of which depends on a number of 

factors: mutation, natural selection, random genetic drift, 

gene flow, the initial state of ancestral populations, and 

population split time (Leng and Zhang, 2013). Statisti-

cal measures discussed in this review do not presume the 

causal factors of population differentiation, nor do they 

discriminate between adaptive differentiation and non-   

adaptive differentiation. For example, there is no rigid 

assumption to constrain the application of the above 

statistics for estimating genetic differentiation of popu-

lations except for the assumption of equal subpopula-

tion sizes. It is the investigators who seek the interpreta-

tion(s) and implication(s) of the estimates of these sta-

tistics. However, the situation will be radically different 

when one intends to estimate any parameters of popula-

tion from these statistics. The aforementioned factors 

are acting interwindingly in populations. As a conse-

quence, it is wishful thinking to attempt to infer the ef-

fect of just one particular factor while ignoring the oth-

ers for natural populations, except under some simpli-

fied theoretical models. One must pay great attention to 

such (generally unrealistic) assumptions when applying 

the relevant shortcut methods. 

6.1  Inference of the magnitude of gene flow 
The level of gene flow is a very important population 

parameter. For practical reasons, the concern is usually 

on the absolute magnitude of gene flow, i.e. the number 

of individuals immigrated to and interbred in a popula-

tion per generation, that is, Nem. One unique advantage 

of the statistic FST (GST) is that it allows the inference of 

the magnitude of gene flow Nem among populations 

under certain conditions (a marvelous characteristic of 

FST and GST that is in great favour of this application 

which is not aware of by the early population geneticists 

is just revealed recently: the equilibrium value of GST is 

largely not sensitive to violation of the assumption of 

mutation model, such as the infinite alleles assumption. 

See Leng and Zhang, 2011). Dobzhansky and Wright 

(1941) first explicitly showed that under the island 

model of population structure (Box 1) with the assump-

tions of no mutation and migration rate (m) being small, 

the following approximation exists among the fixation 

index FST, the effective population size Ne and m under 

equilibrium (Box 1), 

 

1
.

4 1ST
eN m

F 


             

 (4) 

Actually, this formula was obtained in a different 

way earlier by Wright (1931). Therefore, if the equili-

brium value of FST can be estimated from empirical 

genetic data, Nem can then be calculated.  

About two years after his publication of GST, Nei de-

rived a rather complex formula for GST under the island 

model at equilibrium (Nei, 1975). However, this can be 

reduced to 

1

1 4 ( )
1

ST

e

G
K

N m
K




 


, 

where  is the mutation rate per generation and K is the 

number of subpopulations (Takahata and Nei, 1984). 

When the number of subpopulation K is sufficiently 

large, m << 1 and  << m, the right side of the above 

formula is approximately equivalent to that of equation 

(4). If the mutation rate is not negligible, the formula 

becomes 

1

4 4 1ST
e eN m

G
N  


 

(Cockerham and Tachida, 1987; Cockerham and Weir, 

1993).  

Although there is no direct relationship between F'ST 

(G'ST) and m, Meirmans and Hedrick (2011) suggest 

that an estimate of the number of migrants that is unaf-

fected by HS can be obtained through a combination of 

FST and F'ST (equally applicable to G'ST),  

1

4
ST

e
ST

F
N

F
m


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Simulation studies revealed that the equilibrium val-

ue of D is highly sensitive to the assumed mutation 

model (Leng and Zhang, 2011). Because of this property, 

the utility of D in population parameter estimation is 

rather limited.  

Here we would like to add a cautionary note to the 

story of estimation of Nem from FST (GST): Its reliability 

depends critically on whether GST has approached equi-

librium (see below for more discussion). In contrast to 

the popular belief, μ << m is not a sufficient condition 

for using GST to estimate Nem. For example, If popula-

tion size is large and gene flow relatively low, it can 

lead to seriously overestimated Nem even if the condi-

tion μ << m is fulfilled, because it is not safe to assume 

that GST has reached equilibrium (Leng and Zhang, 

2013; Box 1). Additionally, one should carefully con-

sider the biology of their study organisms before they 

employ equation (4) to estimate gene flow, and should 

not simply presume that their species follows the island 

model of population structure. 
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6.2  Properties of the differentiation measures  
under non-equilibrium conditions 

 As briefly discussed above, the inference of demo-

graphic parameters such as Nem under island model has 

to meet the premise that the statistic indices are at equi-

librium, but many species are probably far from reach-

ing equilibrium at many genetic loci (Box 1). Therefore, 

it is important to learn the properties of the differentia-

tion measures under non-equilibrium conditions. Re-

search focus thus far is mainly on the two most popular 

indices, GST and D, under island model. The following 

outcomes have emerged. First, it is observed that both 

GST and D take a fairly long time to reach equilibrium 

(and hence serve as a suitable measure of genetic dif-

ferentiation) if gene flow is weak (e.g., m < 104) and 

mutation rate is not very large (Leng and Zhang, 2013). 

Simulation study reveals that when gene flow is absent 

or very weak, GST and D can only reach equilibrium 

when HS and HT are both in equilibrium; but when mi-

gration rate is moderate or high (e.g., 10-3) GST ap-

proaches equilibrium much quicker than HT, HS, and D. 

In general, D usually converges to its equilibrium value 

much slower than GST (Ryman and Leimar, 2009;  

Leng and Zhang, 2011, 2013; Whitlock, 2011). It is 

worthy of emphasis that it is the migration rate (m), not 

the absolute number of migrants (Nem), that determines 

the speed at which GST or D approaches equilibrium 

(Leng and Zhang, 2013). 

Second, it appears that in non-equilibrium popula-

tions, drift plays a dominant role on GST whatever the 

level of gene flow, whereas after the initial stage of po-

pulation differentiation, drift seems to only play a sec-

ondary role on D when subpopulations exchange indi-

viduals, even if the exchange is infrequent (Leng and 

Zhang, 2013). This property of D can be seen more 

clearly from its equilibrium value. When m << 1 and K 

<< m, at equilibrium (Jost, 2008), 

D ≈ μ(K – 1)/m 

   ≈ μ/m for K = 2; 

   ≈ μK/m for moderate K. 

Note that this formula does not contain the effective 

population size Ne. 

Third, in non-equilibrium populations, GST builds up 

more quickly in time than D. Also, when very low level 

of genetic variation exists in populations, D is often 

unable to detect differentiation. Hence, GST should have 

a larger power to detect recent population genetic events 

than D (Leng and Zhang, 2013).  

Fourth, although D is usually sensitive to mutation 

rate, in certain situations it can be much less sensitive to 

mutation rate heterogeneity than GST. For example, un-

der SMM (but not IAM, i.e. the infinite allele model, 

see Box 1) and complete isolation, when population size 

is large, mutation rate shows a great impact on GST but 

only a mild influence on D. This is markedly different 

from what has been recognized in the equilibrium per-

spective, and provides a potential option for using D to 

inspect mutation rate heterogeneity across loci in large 

isolated populations (Leng and Zhang, 2013). 

Finally, an important but often overlooked aspect is 

that the speed at which populations diverged, as meas-

ured by GST and D, are strongly dependent on the ge-

netic diversity of these populations at split time. The 

greater the initial diversity was, the faster the popula-

tions diverged, and the earlier the equilibrium state was 

reached (Ryman and Leimar, 2008; Leng and Zhang, 

2011). Therefore, the demographic history of the ance-

stral population may have some long-lasting impacts on 

population differentiation and can hold sway over our 

application of the statistical measures. 

6.3  Detecting differentiation 
There exist fundamental differences between the two 

most popular statistics GST and D, neither of them opera-

tes satisfactorily in all situations for quantifying diffe-

rentiation. In addition to those properties of the two 

indices under non-equilibrium conditions just discussed 

above, the following messages are also worthy of con-

sideration. First, as a general rule, GST can quantify dif-

ferentiation fairly well when heterozygosity is low 

whatever the causes (e.g. low mutation rate, low initial 

heterozygosity of the ancestral population or short split 

time); however, when heterozygosity is high (whatever 

the causes, e.g. high mutation rate or high initial hete-

rozygosity) and gene flow is moderate to strong, GST 

often fails to measure differentiation (Leng and Zhang, 

2011). A good practice is to pay close attention to the 

relative levels of heterozygosities (especially HS) in the 

data when GST is the index of interest.  

Second, the accuracy of GST and D in signaling ge-

netic differentiation varies depending on mutation re-

gimes, and the two indices bear different insights for 

markers with high mutation rates. But the issue is com-

plicated by other factors. For example, Alcala et al. 

(2014) claimed that D apparently has a better reflection 

to genetic diversity at weak mutation strength, while 

GST has better performance in detection of differentia-
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tion when mutation rate is intermediate. At high muta-

tion regime, both measures are unsatisfactory, but D is 

slightly better than GST, particularly if the number of 

subpopulations is small (Alcala et al., 2014). However, 

this probably only reflects one facet of the dice, since 

the behaviours of GST and D will be affected by popula-

tion split time and the evolutionary process as well, as 

demonstrated in Raeymaekers et al. (2012) (see below). 

Quite interestingly, it is also demonstrated that when 

population size is not very small (e.g. N ≥ 1000), GST 

can quantify differentiation quite linearly with time over 

a long duration when gene flow is absent or very weak 

even if mutation rate is not low (e.g. μ = 0.001) (Leng 

and Zhang, 2011). 

Third, D and GST have different sensitivities to 

processes shaping short-term population structure. An 

empirical study by Raeymaekers et al. (2012) suggests 

that for markers with moderate to high mutation rates, 

on short timescales and across strong clines in popula-

tion size and connectivity, D is useful to infer coloniza-

tion history, whereas GST is sensitive to more recent 

demographic events. The theoretical basis of this ob-

servation can be found in the simulation study of Leng 

and Zhang (2013) and is discussed above.  

Fourth, because both GST and D are affected by a 

number of variables, including population size, hetero-

zygosity, migration rate, mutation rate, mutation model, 

etc., a large value of GST or D that we observed may not 

necessarily means a greater degree of differentiation, 

and it may simply indicate a small population size under 

non-equilibrium conditions. In summary, if population 

is still in non-equilibrium state, a large value of D may 

mean several things: short population split time and 

small size, and/or low initial homozygosity (high initial 

heterozygosity), or low migration rate, or high mutation 

rate. Whereas, a large value of GST may mean small 

population size, or large number of subpopulations, or 

low mutation rate, or low migration rate. This general 

nature may bear some important implications. For ex-

ample, it is known that the effective population size (Ne) 

vary across the genome and much of this variation still 

remains unexplained (Gossmann et al., 2011). Thus, 

outlier loci with high GST (FST) may not all be ac-

counted for by selection. Similarly, these facts also 

strengthen the argument that comparisons of the values 

of these statistics across studies, not mentioning across 

different types of genetic markers, should be practiced 

judiciously. In particular, although the effect on GST and 

D of mutation rate heterogeneity across loci employed 

in a study remains to be explored, one should be pru-

dent if HS also manifests great heterogeneity across loci. 

6.4  Estimation and test of significance 
Under the assumption of equal effective population 

size for all subpopulations, statistics such as GST, G'ST, 

and D can be all calculated from the total heterozygosi-

ty HT and the average within subpopulations heterozy-

gosity HS. Although one can directly apply sampling 

frequencies of alleles as plugin for population frequen-

cies and calculate the estimates of heterozygosities, and 

then compute the estimates of the above statistics, it is 

highly recommended to use the nearly unbiased estima-

tors of HT and HS, such as Nei and Chesser (1983) or 

Nei (1987). Note that  defined by Weir and Cockerham 

(1984) can be regarded as an estimator of FST corrected 

for sampling bias. In addition, Jost (2008) also derived 

the estimator of D according to Morisita-Horn similarity 

measure used by ecologists (Chao et al., 2008). For 

more exhaustive discussion on this issue, readers may 

consult a recent comprehensive review by Excoffier 

(2007). 

Researchers are often concerned about the statistical 

confidence of these estimates. Sadly, no parametrical or 

statistical distributions of these measures have been 

derived, and the best solution for test of significance is 

to apply some non-parametric procedures. One way is 

to use a permutation test as Excoffier et al. (1992) for 

ΦST, which shuffle the genotypes of individuals among 

subpopulations a great many times, and calculate the 

empirical distribution of the statistic. Another way is to 

do a resampling procedure such as bootstrap or jack-

knife; the null distribution can be then obtained from 

the calculation of estimators from replicate samples 

(Meirmans and Hedrick, 2011). However, in practical 

applications, these seemingly simple resampling tech-

niques are not as simple as they sound. The nature of 

the scientific questions (e.g. the hierarchical levels), the 

feature of genetic markers (e.g. linked or independent), 

the assumptions on population structuring (e.g. with 

structure or no structure) can all affect whether a given 

technique can be employed or how it should be applied 

(e.g. bootstrapping or permuting loci, individuals, or 

subpopulations?). Excoffier (2007) has provided a com-

prehensive analysis on these issues. Additionally, when 

only a small number of loci are used and resampling re-

sults are capricious, one should be vigilant against some 

unusually behaved alleles, loci, or population samples. 
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7  Challenges and Future Development 

Although population differentiation is a fundamental 

process of evolution, and many evolutionary studies de-

mand the inference of population differentiation, the 

field of theoretical research on statistic measures has 

been largely in stasis for decades. The popping up of D 

as a novel measure alternative to GST has unpreceden-

tedly advanced our understanding of both the over half 

century old GST and the a few years old D, creating both 

challenges and opportunities for future development. 

The first remark to make is that both GST and D are 

useful indices but in the same time are not satisfactory. 

After all, FST (and thus GST) was tinkered up from a 

coefficient initially developed for assessing inbreeding 

within a population, and D was developed in a sense to 

overcome the incomplete partitioning of Nei’s additive 

decomposition of the total heterozygosity (this leads it 

to be criticized of lacking any evolutionary interpreta-

tion as its theoretical foundation). Can an alternative 

statistic be set up specifically for quantifying the degree 

of population differentiation that complies with both the 

established population genetic theory as well as proba-

bility theory, for example? Under the shadow of thought 

of FST, various paths have already been explored and 

realized (see the section "The rationales"). Nevertheless, 

one track that has not been seriously examined is the 

inflation of gene identity in subpopulations caused by 

nonrandom mating since differentiation. This is the 

common consequence of population subdivision, thus a 

fundamental nature of the fundamental process. We are 

currently exploring this possibility and developing a 

novel statistic named the inflation index which will be 

publish elsewhere. 

The second remark to make is that all the formulas of 

the statistics discussed in this review represent unrealis-

tic approximation to natural populations. For example, 

they all assume equal subpopulation size and simplified 

formulas for estimating population parameters under the 

island model. Therefore, even if they can satisfactorily  

quantify population differentiation, their estimates are 

unlikely to be reliable in natural populations. Hence, a 

challenge for any novel statistic is that it should have 

the potential to be extended to more generalized situa-

tions, for example, allowing subpopulations to have 

different sizes and accommodating different models of 

population structure. Attempt has already been made to 

define a generalized form of GST to reconcile more de-

mographic and evolutionary scenarios (Hössjer et al., 

2014). 

The third remark is that measuring population diffe-

rentiation so far has been largely limited to summary 

statistics without much inference power. This seems to 

be increasingly in disfavour. While model-based infe-

rence is clearly the promoted promising direction, delv-

ing deeper into the existing statistics may also be a 

worthwhile effort. Our earlier simulation study indicates 

that, although it only explored a very limited parameter 

space, by contrasting the differential behaviors of D and 

GST under non-equilibrium conditions, it is potentially 

possible to make some inference of the evolutionary 

processes shaping population differentiation (Leng and 

Zhang, 2011). 

8  Concluding Remarks 

The available statistics fall into two categories, re-

presented by FST and D, respectively. None of them is 

perfect in measuring population genetic differentiation 

(Leng and Zhang, 2011; Meirmans and Hedrick, 2011; 

Whitlock, 2011; Putman and Carbone, 2014). Never-

theless, they each have advantages and are all valuable 

for current research. In practice, both indices should be 

calculated and a comparison of them can generate use-

ful insights into the evolutionary processes that influ-

ence population differentiation. FST (GST) has some 

unique irreplaceable characteristics assuring its standing 

as the default measure at present and in the near future. 

Also, it will continue to serve as the standard (a null 

model) for any alternative measures to contrast with. 

Instead of being anxious about making choice between 

these indices, one should pay due attention to the equi-

librium status and the level of diversity (especially HS) 

of the populations, since they largely sway the power of 

a given statistic to address a specific question. The mul-

ti-faceted comparative summary discussed in the section 

"Critical issues in the application of the statistics" pro-

vides a basic reference for readers to be familiar with 

the pros and cons of various statistics and then guide 

their applications. 
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