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Abstract

For some groups of organisms, DNA barcoding can provide a useful tool in

taxonomy, evolutionary biology, and biodiversity assessment. However, the effi-

cacy of DNA barcoding depends on the degree of sampling per species, because

a large enough sample size is needed to provide a reliable estimate of genetic

polymorphism and for delimiting species. We used a simulation approach to

examine the effects of sample size on four estimators of genetic polymorphism

related to DNA barcoding: mismatch distribution, nucleotide diversity, the

number of haplotypes, and maximum pairwise distance. Our results showed

that mismatch distributions derived from subsamples of ≥20 individuals usually

bore a close resemblance to that of the full dataset. Estimates of nucleotide

diversity from subsamples of ≥20 individuals tended to be bell-shaped around

that of the full dataset, whereas estimates from smaller subsamples were not. As

expected, greater sampling generally led to an increase in the number of haplo-

types. We also found that subsamples of ≥20 individuals allowed a good esti-

mate of the maximum pairwise distance of the full dataset, while smaller ones

were associated with a high probability of underestimation. Overall, our study

confirms the expectation that larger samples are beneficial for the efficacy of

DNA barcoding and suggests that a minimum sample size of 20 individuals is

needed in practice for each population.

Introduction

Over the past decade, DNA barcoding has proven to be a

useful tool in studies of taxonomy, ecology, biodiversity

assessment, and various other fields (Waugh 2007;

Valentini et al. 2009; Scheffers et al. 2012). And its con-

cept has become the basis of DNA mini-barcoding

(Meusnier et al. 2008) and DNA metabarcoding which

uses high-thoughput sequences from environmental

samples (Yu et al. 2012). Nevertheless, many theoretical

and methodological aspects of DNA barcoding remain

subject to debate, including the species concepts (Rubi-
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noff et al. 2006a,b), variability in the success of the

method (e.g. Meier et al. 2006; Dasmahapatra et al.

2010), and the choice of molecular markers (Roe and

Sperling 2007; Luo et al. 2011). In particular, the impact

of sample size has long been an important issue in DNA

barcoding (Austerlitz et al. 2009; Zhang et al. 2010; Berg-

sten et al. 2012; Jin et al. 2012).

Although DNA barcoding aims to offer a rapid, reli-

able, automatic, and cost-effective method for species

identification and delimitation, it can be complicated by

variation in levels of genetic polymorphism among spe-

cies (Hebert et al. 2003; Austerlitz et al. 2009). The accu-

racy and efficacy of DNA barcoding generally depend on

the existence of a gap between intraspecific variation and

interspecific variation, but this gap is absent when species

are polyphyletic or paraphyletic (Meyer and Paulay 2005;

Austerlitz et al. 2009). This criterion is becoming less

important with the advent of methods that do not

entirely rely on pairwise genetic distances, including

those that employ an explicit phylogenetic framework

(e.g. Pons et al. 2006). In any case, a detailed under-

standing of intraspecific polymorphism in different spe-

cies forms the basis of reliable DNA barcoding via both

traditional and new methods, and is particularly impor-

tant for constructing reference databases. In turn, this is

highly dependent on the degree of sampling per species.

In practice, however, there is usually a compromise

between the degree of sampling per species and the

extent of taxonomic coverage, given limited resources for

conducting genetic sampling. A consequence is that

intraspecific sampling is often quite limited (Meyer and

Paulay 2005; Zhang et al. 2010; Bergsten et al. 2012; Liu

et al. 2012).

There have been a number of studies into the impacts

of sample size on DNA barcoding. Among these, Matz

and Nielsen (2005) found that at least 12 individuals per

species were needed to achieve confidence in their statisti-

cal method for testing species membership, while 5 and

12 references per species at least were respectively pro-

posed by others (Ross et al. 2008; Jin et al. 2012). When

comparing phylogenetic and statistical classification meth-

ods for DNA barcoding, Austerlitz et al. (2009) found

that the success rate increased with sample size. Zhang

et al. (2010) examined the increase in haplotype richness

with sample size based on a nonparametric resampling

approach. In a study of beetles, Bergsten et al. (2012)

showed that a large sample size (~70 individuals) was

required to obtain a reliable estimate of 95% of the

intraspecific variation of Agabus bipustulatus (Insecta:

Coleoptera: Dytiscidae) throughout Europe. Conversely, a

plant barcoding study of Taxus species (Pinopsida:

Pinales: Taxaceae) suggested that sampling a single

individual per population was adequate (Liu et al. 2012).

Each of these studies focused on a specific method, a par-

ticular aspect of genetic polymorphism, or a specific

taxon. This points to a need for a more comprehensive

analysis of the performance of various estimators of

genetic polymorphism when there is limited sampling.

Here, we analyse the impact of sample size on DNA

barcoding. Using DNA sequence data generated via

simulation under a coalescent model, we examined the

behaviour of four estimators of genetic polymorphism:

mismatch distribution, nucleotide diversity, the number

of haplotypes, and maximum pairwise distance.

Materials and Methods

Coalescent assumptions

The coalescent framework captures ancestor-descendant

relationships under the Wright-Fisher model (Fisher

1922; Wright 1931), and has been widely used to study

the evolutionary process at the population level (Kingman

1982). Simple coalescent models typically include assump-

tions of a haploid genealogy, absence of recombination,

absence of natural selection, and a constant mutation

rate. These are consistent with most animal DNA barcod-

ing studies, which widely employ the mitochondrial bar-

code cytochrome c oxidase 1 (CO1). In addition, many

studies focus on the biodiversity of particular geographic

regions; here we examine a simple scenario involving a

single population or deme.

Data simulation

The program makesamples (ms) was used to simulate

DNA evolution based on the coalescent (Hudson 2002).

We generated random genealogies, on which mutations

were randomly added according to a Poisson distribution

with a constant mutation rate. We assumed

h = 4Nl = 3.0 for each population, where h is the muta-

tion parameter, N is the population size, and l is the

mutation rate. We drew 500 samples for each of 10

independent replicates. A constant population size was

assumed in these simulations. We considered more com-

plex population-size histories, but have not included them

in the present study (see Discussion for details).

With the genealogies simulated by ms (Fig. S1), we

used Seq-Gen 1.3.2 (Rambaut and Grassly 1997) to simu-

late the evolution of nucleotide sequences under finite-

sites models. We used the Jukes-Cantor (JC) model of

nucleotide substitution (Jukes and Cantor 1969). To

approximate the length of the mitochondrial CO1 gene,

simulated sequences had lengths of 1,500 bp. We rescaled

the branch lengths to make them equal to the expected

number of substitutions per site. This was done on a
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case-by-case basis so that intraspecific genetic variance

was always less than 3%.

To evaluate the tree shape of the simulated genealogies,

we calculated the Colless index (Colless 1982; Heard 1992),

using the R package apTreeshape (Bortolussi et al. 2005),

yielding a small range of values (0.0173 to 0.0247). In addi-

tion, following the method of Aldous (2001), we plotted

split information of the internal nodes near the root to give

evidence of different branching patterns (Fig. 1).

Mismatch distribution

Pairwise sequence comparisons are important for estimat-

ing intraspecific and/or interspecific genetic variances for

DNA barcoding. This approach is commonly used in the

form of mismatch distributions, which plot the frequency

distribution of pairwise distances from a population

sample. The distribution is multimodal for populations of

constant or rapidly shrinking size and unimodal for pop-

ulations that have experienced rapid growth (Slatkin and

Hudson 1991; Rogers and Harpending 1992; Schenekar

and Weiss 2011). We examined the influence of sample

size on mismatch distributions using our 10 simulated

datasets. For each dataset, we computed pairwise JC

distances using PAUP* v4.0b10 (Swofford 2002). To allow

straightforward comparisons among datasets, we stan-

dardized the pairwise distances in each dataset using

min-max normalization (e.g. Jain et al. 2005). For

example, for dataset seq_A:

d0i ¼
di�minA

maxA�minA
�ðnew maxA�new minAÞþnew minA

(1)

where d0i is the corrected distance corresponding to the

original distance di, minA and maxA are the respective

minimum and maximum pairwise distances from seq_A,

new_maxA is 0.03, and new_minA is 0.00. We then plot-

ted histograms together with kernel density estimates (Sil-

verman 1981) and a heatmap to show the distribution of

pairwise distances. For each dataset of 500 sequences, we

drew random subsamples of 5, 10, 20, 30, 50, and 100

sequences. Subsampling was done 10 times for each

sample size. Their mismatch distributions were then

compared with that of the full dataset. With pairwise dis-

tances normalized in the full dataset, further standardiza-

tion was not needed for these subsamples.

Nucleotide diversity

Nucleotide diversity (p), the average of all pairwise dis-

tances in a sample (Nei and Li 1979; Nei and Miller

1990), is commonly used to estimate genetic polymor-

phism and forms the basis of further tests (e.g. Tajima’s

D test; Tajima 1989). In the context of DNA barcoding, p
can be treated as the mean of the pairwise distances

within species of interest (e.g. Luo et al. 2011; Porco et al.

2014). It can be calculated as

p ¼ X1 þ X2 þ X3 þ � � � þ Xk

k
(2)

where X is the pairwise distance and k is the number of

pairwise comparisons in a sample of size n. A sample size

(n) of at least nine provides more than 30 pairwise com-

parisons (k), thus forming one statistically large sample.

According to the Lindeberg-L�evy central limit theorem, if

k is large enough, the distribution of p tends to follow a

normal distribution with mean equal to b and variance

equal to r2/k, where b and r are the nucleotide diversity

and variance of pairwise distances of the full dataset

respectively. That is,

ffiffiffi
k

p
ð1
k

Xk
i¼1

XiÞ � b

 !d

! Nð0; r2Þ: (3)

This holds regardless of whether pairwise distances of

the entire dataset fall into a bell-shaped distribution or

not. We investigated this using the simulated data. We

drew subsamples of 2, 5, 10, 20, 30, 40, 50, 60, 70, 80, 90,

and 100 sequences with 10,000 replicates for each sample

size. For each subsample, we computed nucleotide diver-

sity based on pairwise JC distances.
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Figure 1. Split information around internal nodes of four chosen

genealogies. The x-axis represents seven internal nodes beginning at

the root, while the y-axis represents the size of the larger daughter

clade. Among the ten trees consisting of 500 tips, data are shown

here for tree_A (blue solid circles), tree_B (green solid circles), tree_F

(red solid circles), and tree_I (yellow solid circles). Empty black circles

represent data from a balanced tree topology.
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Number of haplotypes

The number of different haplotypes is an important indica-

tor of genetic diversity in studies of populations. We used

our simulated data to examine the effect of sample size on

the number of haplotypes. We drew subsamples of 2, 10,

20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, and

150 sequences with 100 replicates for each sample size. For

each subsample, the number of haplotypes was computed

using the software DnaSP v5.10.01 (Rozas and Rozas 1995;

Librado and Rozas 2009). The Michaelis-Menten equa-

tion was to analyse the median number of haplotypes from

each resultant set of 100 replicates (Zhang et al. 2010):

FðxÞ ¼ ax

1þ bx
(4)

where F(x) represents the median number of haplotypes

and is the function of the sample size, x, and constants a

and b were computed by nonlinear fitting via least-

squares estimation (Tang 2008) across the 16 different

subsample sizes.

Maximum pairwise distance

Maximum pairwise distance is a simple representation of

the genetic diversity in a sample. If molecular evolution

has been clocklike, correctly identifying the maximum

genetic distance is equivalent to capturing the most recent

common ancestor of all present-day individuals in the

gene tree. This can require a relatively large number of

samples, especially if the gene tree is imbalanced (Sander-

son 1996). We tested the effect of sample size on this mea-

sure, with reference to the maximum pairwise distance of

the full dataset. Subsamples of sizes 2, 5, 10, 20, 30, 40, 50,

60, 70, 80, 90, and 100 were drawn from each dataset of

500 sequences, with 10,000 replicates for each sample size.

We then compared the maximum pairwise JC distance of

subsamples to that of corresponding full dataset.

Additional datasets

We repeated all of our analyses using two additional data-

sets, containing 300 sequences (dataset seq_K) and 1000

sequences (dataset seq_L) respectively. These datasets were
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Figure 2. Mismatch distributions together

with kernel density estimates of dataset seq_I

and its subsamples. Only the result from one

randomly chosen subsample of each size is

shown here.
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generated using the same procedure as for the 500-

sequence datasets described above. We analysed mismatch

distributions using random subsamples of 5, 10, 20, 30, 50,

and 100 sequences, with 10 replicates for each sample size.

We estimated nucleotide diversity and maximum pairwise

distance using random subsamples of 2, 5, 10, 20, 30, 40,

50, and 60 sequences, with 10,000 replicates for each

sample size. We calculated the number of haplotypes from

random subsamples of 2, 20, 40, 60, 80, 100, 120, and 140

sequences, with 100 replicates for each sample size.

Results

Effect of sample size on mismatch
distribution

The mismatch distributions of the 10 full datasets were

distinct from each other in shape, although all were

bimodal or multimodal (Fig. 2; Data S1). For some data-

sets (e.g. seq_I in Fig. 2), there were gaps in the distribu-

tion of pairwise distances, as we normalized the pairwise

distances within each dataset. The heatmap and related

clustering indirectly show 124,750 values for each dataset

and the relationships among the 10 datasets (Fig. S2).

To characterize the impact of sample size on mismatch

distributions, we focused on three features: the range of

distance values, existence of large gaps, and approximate

position of the modes. The mismatch distributions for

large sample sizes (50 and 100) bore a close resemblance

to that of the corresponding full dataset. In contrast, when

the sample size was only 5 or 10, the mismatch distribu-

tions bore little resemblance to those of the full datasets;

the distributions from the subsamples contained addi-

tional gaps and the curves of kernel-density estimates had

uncertain shapes. At intermediate sample sizes, the shapes

of the mismatch distributions were variable among repli-

cates but were broadly similar to those of the full dataset.

Effect of sample size on nucleotide diversity

The distributions of nucleotide diversity from random

subsamples of the data (with size ranging from 2 to 100)

shared a number of features, verifying the central limit

theorem to some degree (Fig. 3; Data S2). When the

sample size was 2 or 5, the distributions of the 10,000

computed values of nucleotide diversity (p) were usually

not bell-shaped, with a number of values distinct from

the nucleotide diversity of the full dataset (b, denoted by

the red vertical line in Fig. 3 and Data S2). When the

sample size was 10, the distributions generally approached

the bell curve but with some variation among datasets.

When the sample sizes were 20 and greater, the distribu-

tions of nucleotide diversity were generally bell-shaped;

among subsamples from the same dataset, the mode of
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Figure 3. Histograms showing distributions of

nucleotide diversity values of subsamples from

dataset seq_J. The blue curves are from kernel

density estimates, while the red vertical lines

indicate nucleotide diversity of the full dataset.

ª 2015 The Authors. Ecology and Evolution published by John Wiley & Sons Ltd. 5873

A. Luo et al. A Simulation Study of Sample Size



T
a
b
le

1
.
D
es
cr
ip
ti
ve

st
at
is
ti
cs

o
f
n
u
cl
eo

ti
d
e
d
iv
er
si
ti
es
.
Ea
ch

o
f
th
e
te
n
d
at
as
et
s
(f
ro
m

se
q
_A

to
se
q
_J
)
co
n
ta
in
s
5
0
0
si
m
u
la
te
d
se
q
u
en

ce
s,
w
h
ile

se
q
_K

an
d
se
q
_J

co
n
ta
in

3
0
0
an

d
1
0
0
0
se
q
u
en

ce
s,

re
sp
ec
ti
ve
ly
.

D
at
as
et

b

M
ea
n
va
lu
e
o
f
p
s

Pe
rc
en

t
o
f
va
lu
es

in
ra
n
g
e
o
f
b
�

0
.0
0
1

2
1

5
1

1
0
1

2
0
1

3
0
1

4
0
1

5
0
1

6
0
1

7
0
1

8
0
1

9
0
1

1
0
0
1

Se
q
_A

0
.0
1
4

0
.0
1
4

0
.0
1
4

0
.0
1
4

0
.0
1
4

0
.0
1
4

0
.0
1
4

0
.0
1
4

0
.0
1
4

0
.0
1
4

0
.0
1
4

0
.0
1
4

0
.0
1
4

0
.0
0
%

3
6
.7
3
%

8
7
.8
0
%

6
1
.9
7
%

8
9
.1
1
%

9
4
.9
9
%

9
7
.2
7
%

9
8
.1
7
%

9
8
.6
1
%

9
9
.3
7
%

9
9
.6
2
%

9
9
.7
5
%

Se
q
_B

0
.0
1
2

0
.0
1
2

0
.0
1
2

0
.0
1
2

0
.0
1
2

0
.0
1
2

0
.0
1
2

0
.0
1
2

0
.0
1
2

0
.0
1
2

0
.0
1
2

0
.0
1
2

0
.0
1
2

8
.1
7
%

3
2
.1
3
%

4
6
.3
2
%

7
1
.6
5
%

8
3
.7
4
%

8
9
.6
4
%

9
3
.5
8
%

9
5
.8
4
%

9
7
.4
4
%

9
8
.1
0
%

9
8
.7
8
%

9
9
.0
5
%

Se
q
_C

0
.0
1
1

0
.0
1
1

0
.0
1
1

0
.0
1
1

0
.0
1
1

0
.0
1
1

0
.0
1
1

0
.0
1
1

0
.0
1
1

0
.0
1
1

0
.0
1
1

0
.0
1
1

0
.0
1
1

0
.6
4
%

2
7
.2
8
%

3
7
.3
9
%

5
5
.4
4
%

6
5
.8
6
%

7
4
.5
3
%

7
9
.1
3
%

8
2
.5
2
%

8
5
.9
9
%

8
8
.9
6
%

9
0
.5
7
%

9
1
.9
8
%

Se
q
_D

0
.0
0
9

0
.0
0
9

0
.0
0
9

0
.0
0
9

0
.0
0
9

0
.0
0
9

0
.0
0
9

0
.0
0
9

0
.0
0
9

0
.0
0
9

0
.0
0
9

0
.0
0
9

0
.0
0
9

4
.4
0
%

5
8
.5
2
%

8
1
.5
9
%

9
2
.1
8
%

9
6
.9
0
%

9
8
.7
0
%

9
9
.4
6
%

9
9
.8
1
%

9
9
.9
6
%

9
9
.9
6
%

1
0
0
.0
0
%

1
0
0
.0
0
%

Se
q
_E

0
.0
1
2

0
.0
1
2

0
.0
1
2

0
.0
1
2

0
.0
1
2

0
.0
1
2

0
.0
1
2

0
.0
1
2

0
.0
1
2

0
.0
1
2

0
.0
1
2

0
.0
1
2

0
.0
1
2

2
9
.1
9
%

4
0
.5
7
%

6
1
.3
2
%

8
0
.0
6
%

8
8
.8
2
%

9
3
.0
6
%

9
6
.2
0
%

9
7
.7
7
%

9
8
.9
4
%

9
9
.2
0
%

9
9
.4
8
%

9
9
.7
6
%

Se
q
_F

0
.0
1
0

0
.0
1
0

0
.0
1
0

0
.0
1
0

0
.0
1
0

0
.0
1
0

0
.0
1
0

0
.0
1
0

0
.0
1
0

0
.0
1
0

0
.0
1
0

0
.0
1
0

0
.0
1
0

1
9
.7
9
%

5
0
.4
9
%

7
5
.9
9
%

9
0
.5
8
%

9
6
.1
4
%

9
7
.7
1
%

9
8
.6
8
%

9
9
.2
9
%

9
9
.6
7
%

9
9
.8
5
%

9
9
.8
9
%

9
9
.9
4
%

Se
q
_G

0
.0
1
2

0
.0
1
2

0
.0
1
2

0
.0
1
2

0
.0
1
2

0
.0
1
2

0
.0
1
2

0
.0
1
2

0
.0
1
2

0
.0
1
2

0
.0
1
2

0
.0
1
2

0
.0
1
2

6
.2
3
%

3
5
.4
8
%

5
6
.9
3
%

8
0
.7
1
%

9
0
.3
5
%

9
5
.3
0
%

9
7
.9
6
%

9
9
.0
6
%

9
9
.4
5
%

9
9
.7
6
%

9
9
.9
2
%

9
9
.9
2
%

Se
q
_H

0
.0
0
5

0
.0
0
5

0
.0
0
5

0
.0
0
5

0
.0
0
5

0
.0
0
5

0
.0
0
5

0
.0
0
5

0
.0
0
5

0
.0
0
5

0
.0
0
5

0
.0
0
5

0
.0
0
5

2
0
.1
9
%

8
.0
3
%

3
2
.7
6
%

6
0
.4
9
%

7
2
.7
8
%

7
7
.7
7
%

8
3
.8
0
%

8
8
.6
8
%

9
2
.3
1
%

9
3
.8
1
%

9
5
.7
5
%

9
6
.6
2
%

Se
q
_I

0
.0
1
3

0
.0
1
3

0
.0
1
3

0
.0
1
3

0
.0
1
3

0
.0
1
3

0
.0
1
3

0
.0
1
3

0
.0
1
3

0
.0
1
3

0
.0
1
3

0
.0
1
3

0
.0
1
3

0
.0
0
%

3
0
.7
9
%

7
8
.5
9
%

9
0
.9
8
%

9
4
.8
7
%

9
7
.2
2
%

9
8
.7
0
%

9
8
.9
5
%

9
9
.4
1
%

9
9
.5
9
%

9
9
.7
1
%

9
9
.8
5
%

Se
q
_J

0
.0
1
3

0
.0
1
3

0
.0
1
3

0
.0
1
3

0
.0
1
3

0
.0
1
3

0
.0
1
3

0
.0
1
3

0
.0
1
3

0
.0
1
3

0
.0
1
3

0
.0
1
3

0
.0
1
3

0
.0
5
%

2
6
.0
3
%

3
5
.8
4
%

5
2
.1
9
%

6
3
.2
3
%

7
1
.4
7
%

7
7
.8
3
%

8
3
.0
0
%

8
6
.5
9
%

8
9
.2
0
%

9
1
.9
1
%

9
3
.8
4
%

Se
q
_K

0
.0
0
8

0
.0
0
8

0
.0
0
8

0
.0
0
8

0
.0
0
8

0
.0
0
8

0
.0
0
8

0
.0
0
8

0
.0
0
8

N
A

N
A

N
A

N
A

4
.7
7
%

5
6
.2
7
%

7
8
.7
2
%

8
7
.3
4
%

9
1
.9
9
%

9
4
.7
9
%

9
6
.8
5
%

9
8
.0
1
%

N
A

N
A

N
A

N
A

Se
q
_L

0
.0
1
0

0
.0
1
0

0
.0
1
0

0
.0
1
0

0
.0
1
0

0
.0
1
0

0
.0
1
0

0
.0
1
0

0
.0
1
0

N
A

N
A

N
A

N
A

2
2
.7
5
%

2
4
.0
0
%

4
3
.7
9
%

6
4
.9
1
%

7
5
.3
8
%

8
2
.9
2
%

8
7
.6
2
%

9
0
.9
1
%

N
A

N
A

N
A

N
A

1
Si
ze

o
f
su
b
sa
m
p
le
s
th
at

w
er
e
d
ra
w
n
ra
n
d
o
m
ly

fr
o
m

th
e
fu
ll
d
at
as
et
.

5874 ª 2015 The Authors. Ecology and Evolution published by John Wiley & Sons Ltd.

A Simulation Study of Sample Size A. Luo et al.



every set of 10,000 values closely approximated the

nucleotide diversity of the full dataset; the number of out-

lier values declined with increasing sample size.

To examine the distributions in greater detail, we cal-

culated the percentage of values in range of b � 0.001.

We found that the larger the size of the random sample,

the more closely its nucleotide diversity approached the

expected value (Table 1). Although 100% of values fell

within the target range when the sample size was 100, the

percentage dropped to 87.80% when the sample size was

only 10 for seq_A. With sampling from the 10 datasets

(i.e. from seq_A to seq_J in Table 1) with a size of 20,

percentages ranged from 52.19% to 92.18%. This suggests

that descriptive statistics might not present a full picture

of the findings. In Table 1, the mean of 10,000 nucleotide

diversity values was very similar to b, whether the sample

size was 2 or 100.

Effect of sample size on the number of
haplotypes

Larger samples yielded greater numbers of haplotypes, but

with generally larger deviations from the medians despite

the fact that there was a declining growth in deviations

with increasing sample sizes (Fig. 4A; Data S3). With any

quartile as the reference, there tended to be fewer newly

added haplotypes as the sample size increased.

Our estimates of the constants a and b in the Michae-

lis-Menten equation showed that the variance of the error

term ranged from 0.1524 to 0.5042. Although functions

representing the ten Michaelis-Menten equations all

yielded asymptotic-logarithm curves (Fig. 4B), the same

sample size could lead to different numbers of haplotypes,

especially for large sample sizes. Given the same sample

size (e.g. 20), the slopes at the corresponding points in

the curves were different (e.g. 0.2608 and 0.7037; Fig. 4B),

reflecting the fact that different sample sizes would be

required for the 10 curves with slope values of zero.

Effect of sample size on maximum pairwise
distance

When sample sizes were 20 and greater, the maximum

pairwise distance of the sample closely represented that of

the full dataset (Fig. 5; Data S4). In contrast, when sam-

ple sizes were smaller (especially when the size was 2 or

5), the maximum pairwise distance of the sample tended

to underestimate that of the full dataset, and values varied

considerably among different samples.

Results of additional datasets

Overall, the results from additional datasets were gener-

ally consistent with those described above for the 10

datasets containing 500 sequences each (Table 1; Data

S1–S4). This confirmed that the effects of sample size

did not depend on the size of the full simulated

datasets.

Discussion

Our results confirm the benefits of increasing sample sizes

for four different measures of genetic polymorphism that

are closely associated with DNA barcoding. Our findings

are based on a simulation approach, which has several

key benefits. First, with the assumption of random mat-

ing, the sequences in each dataset can be directly regarded

as samples from the same geographic population or deme.

This is in accordance with most DNA barcoding studies,

which tend to focus on the biodiversity of particular

geographic regions (Bergsten et al. 2012). Second, all of
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Figure 4. (A) Boxplots showing the numbers of haplotypes for every

100 repeats of subsamples of the same size from dataset seq_C. The

x-axis denotes the sample size, while the y-axis represents the detailed

number of haplotypes. (B) Ten asymptotic-logarithm curves

corresponding to the ten Michaelis-Menten equations, which were

estimated from the median values in boxplots of datasets from seq_A

to seq_J.
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the simulated datasets were independent replicates, which

can result in relatively generalized conclusion. Third, with

our results being consistent across simulated samples of

different sizes (i.e. 300, 500, and 1,000), we can conclude

that our results can reasonably apply to the entire

population. It is noteworthy that we assumed a constant

population size for all simulations. Shrinking populations

were not included, considering that there are usually lim-

ited individuals for sampling and may be no coalescence

in their evolutionary history. Samples from exponentially

growing populations should yield gene trees with longer

external branches and their pairwise distances are

expected to form a unimodal distribution (Slatkin and

Hudson 1991; Schenekar and Weiss 2011). Given that this

is a simpler case than that of constant-size populations,

we chose not to include growing populations in the simu-

lations performed in this study.

The impact of sample size

Investigations of both simulated and real data have

proposed that sample sizes should be maximized for each

species, because this provides a more comprehensive

picture of haplotype diversity (Zhang et al. 2010). As

expected, our analysis of the number of haplotypes gener-

ally supports this recommendation (Fig. 4). Our study

also considered the effect of sample size on mismatch

distribution, nucleotide diversity, and maximum pairwise

distance. Generally, the mismatch distributions of subsam-

ples could be classified into two different groups: one of

smaller sample sizes (i.e. 5 and 10) and the other of larger

sample sizes (i.e. not fewer than 20). Unsurprisingly, larger

samples produced distributions that bore closer resem-

blance to that of the full dataset. In the case of nucleotide

diversity, with the exception of the smaller sample sizes

(i.e. 2, 5, and 10), 10,000 repeats tended to yield distribu-

tions that were bell-shaped. In addition, the larger the size

of the random sample, the more closely its nucleotide

diversity approached the expected value (Fig. 3; Table 1).

The results from our investigation of maximum pairwise

distance are consistent with the above in that the genetic

diversity of the full dataset can be accurately estimated

when the sample size were 20 and greater (Fig. 5). Thus,

our study has confirmed that it is better to obtain samples

as large as possible, with a minimum sample size of 20

individuals per population. When sampling from multiple

populations, a case that was not addressed in the present

study, stratified sampling would involve repeated sampling

in all strata if an absence of gene flow can be assumed.

Estimators of genetic polymorphism

In view of the entire population and its random sample,

our study of the impact of sample size on DNA barcoding
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offers insights into the performance of several estimators

of genetic polymorphism. Among these, the mismatch

distribution can provide detailed depictions of the pair-

wise distances in a sample. With its other applications in

demographic analysis, it is useful for constructing refer-

ence databases for DNA barcoding, providing information

such as the approximate range of intraspecific distances

and possible gaps existing in intraspecific distances.

However, it is not so straightforward to use mismatch

distributions to summarise genetic polymorphism, which

is more complex in nature. For this purpose, the number

of haplotypes is commonly employed instead. However,

the number itself cannot present detailed information

about the sequence data, which are important for delimit-

ing species, estimating demographic parameters, and

other evolutionary analyses. Moreover, although the num-

ber of haplotypes in the entire population can be inferred

using the Michaelis-Menten equation, such an approach

is not practical for studies of real species. We found that

the nucleotide diversity of a large sample can provide a

good reflection of the genetic polymorphism of the entire

population of interest. However, based on mismatch dis-

tributions where there are possible gaps and which are

usually nonwave-like, it is not always a good estimator

for evaluating the central tendency of pairwise distances.

Finally, we found that the maximum pairwise distance of

a large sample provides a simple and straightforward

means of summarizing the genetic diversity of the entire

population.

Other implications for DNA barcoding

Our results showed that there may be gaps in mismatch

distributions of pairwise distances, even when the sample

size was as large as 500. The existence of gaps is consis-

tent with basic coalescent theory. Towards the root of the

genealogy, there are fewer lineages and the branches tend

to be longer; a greater number of mutations can accumu-

late along these basal branches, leading to a gap between

the intra- and intergroup distances. In specific cases, the

gap can be obscured stochastically, due to mutation rate

variation over time or other factors. However, the possi-

ble existence of gaps in intraspecific distances does pro-

pose a potential problem for DNA barcoding with

methods based on distances or gaps (e.g. Hebert et al.

2004; Puillandre et al. 2012), especially when the reference

database has a limited number of sample sequences.

Comparatively, Bayesian phylogenetic inference, the gen-

eralized mixed Yule-coalescent method (Pons et al. 2006),

and the Bayesian modeling approach (Yang and Rannala

2010) should be more reliable for DNA barcoding.

In practice, there is an increasing tendency to employ

multiple genes for species delimitation (e.g. Yang and

Rannala 2010; Dupuis et al. 2012; Satler et al. 2013).

Our independent simulated data can be regarded as

samples from different, unlinked loci of the same

population. With the generally consistent results from

these datasets, our findings on the impacts of sample

size should also be applicable to multilocus DNA

barcoding.

On the whole, our investigation of four estimators of

genetic polymorphism confirms the benefit of increasing

sample size. More importantly, we found that a sample

size of 20 is able to provide a reasonable reflection of the

polymorphism of the entire population. Yet, due to the

basic assumptions involved in our approach, our results

are only applicable for studies limited to a single geo-

graphic population. Our results also reveal some of the

disadvantages of these estimators in evaluating genetic

polymorphism. Other findings, such as the existence of

gaps in mismatch distributions, have potential conse-

quences for DNA barcoding and related studies. Com-

pared with previous studies of sample sizes for DNA

barcoding, our study presents a more systematic and

comprehensive evaluation. Further work should aim to

investigate more complex simulation conditions and

provide empirical verifications.
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Figure S1. Ten genealogies shown by rectangular phylo-

gram. Since the branch lengths were rescaled while

sequences being simulated, scale bars are not shown here.

Figure S2. Heatmap showing pairwise distances of the ten

datasets (from seq_A to seq_J) together with hierarchical

clustering.

Data S1. Mismatch distributions of all the datasets except

seq_I. Kernel density estimates are provided except for

dataset seq_H because of the data incompatibility with

the estimate.

Data S2. Histograms showing distributions of nucleotide

diversity values from all the datasets except seq_J.

Data S3. Boxplots showing the numbers of haplotypes

from all the datasets except seq_C.

Data S4. Histograms showing distributions of maximum

pairwise distances from all the datasets except seq_E.
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